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Abstract

We use de-identified data from Facebook to study the nature of peer effects in the market for

cell phones. To identify peer effects, we exploit variation in friends’ new phone acquisitions

resulting from random phone losses. A new phone purchase by a friend has a large and

persistent effect on an individual’s own demand for phones of the same brand. While

peer effects increase the overall demand for phones, a friend’s purchase of a particular

phone brand can reduce an individual’s own demand for phones from competing brands,

in particular if they are running on a different operating system.
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Peer effects in consumption are pervasive. For example, an individual’s choice of which car to pur-

chase is likely influenced by the recent car purchasing decisions of her friends. Such peer effects have

important implications for firms and policy makers. For instance, in the presence of peer effects, the

elasticity of aggregate demand may be larger than the elasticity of individual demand, since any direct

incremental sales in response to a price reduction may lead to further extra sales through peer effects.

Similarly, from a macro perspective, such peer effects in consumption suggest that the effects of stim-

ulus policies on aggregate demand are larger than those estimated from directly-affected individuals.

Despite the economic importance of peer effects in consumption and product adoption decisions,

there is limited evidence on their exact nature and the resulting implications. For example, peer ef-

fects may lead someone to buy a new phone when her friend gets a new phone, but the effect of

this purchase on firm profits depends on whether it represents incremental demand or the retiming

of an already planned purchase. The implications of such peer effects for the competitive dynamics

between firms also depend on whether any changes in demand are restricted to the brand purchased

by the peer, or whether there are positive or negative demand spillovers to competing brands.

In this paper, we explore the nature of peer effects in the U.S. cell phone market. We find that

peer effects are large, heterogeneous, and long-lasting, and that they generate substantial incremen-

tal demand. Positive peer effects are largest for the brand purchased by the peer, but the size of the

peer effect on same-brand demand often exceeds the effect on total phone demand. This finding sug-

gests that some incremental same-brand purchases come at the expense of purchases from competing

brands, in particular those on different operating systems.

We work with de-identified data from Facebook, the world’s largest online social networking site.

At the end of our sample period in May 2016, Facebook had around 226 million active users in the U.S.

and Canada (Facebook, 2016). In this data set, we observe individuals’ social networks as represented

by their Facebook friends, which have been shown to provide a fair representation of real-world U.S.

friendship networks. For mobile active users, we also observe data on the device model used to log

into their Facebook accounts, allowing us to identify the timing of new phone acquisitions.

We use this data to explore how phone purchases by a user’s friends influence the user’s own

phone-purchasing behavior. To identify peer effects separately from common shocks or common pref-

erences within friendship groups, we exploit quasi-random variation in friends’ phone purchases.

Useful sources of variation need to shift a friend’s probability of acquiring a new phone in a given

week, without affecting the probability of a user herself purchasing a new phone through any channel

other than peer effects. We use two separate sources of variation that fit these requirements.

First, we use the number of friends who break or lose their phones in a given week to instrument

for how many friends purchase a new phone in that week. The identifying assumption is that the num-

ber of friends who break or lose their phones in a given week is conditionally random and unrelated

to a user’s own propensity to buy a new phone in that week. We provide various pieces of evidence

in support of this assumption. We identify individuals who randomly break or lose their phones by

applying natural language processing and machine learning techniques to the universe of public posts
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on Facebook. This approach allows us to detect posts, such as “Phone broken...Ordered a new one but if

anyone needs me urgently, call Joe,” which signal the random phone loss by a peer. We show that people

are substantially more likely to buy a new phone in the week after posting such messages. Our second

instrument for the number of friends who obtain a new phone in a given week is the number of peers

who are likely up for a contract renewal, which is often aligned with an upgrade to a new device.

We improve the power of these instruments by exploiting variation not only in how many friends

experience the conditionally random event, but also in which friends do so. Specifically, for both instru-

ments, we use neural networks to estimate the probability that each individual would obtain a new

phone conditional on the event, exploiting, for example, that older individuals are more likely to buy

a new phone immediately after breaking their old device. The eventual instrument, then, is the sum

of these estimated propensities across all individuals who experience the event, controlling for the dis-

tribution of these propensities in the overall pool of friends. This research design allows us to control,

for example, for the average age in a person’s friendship network, and only identify off variation in

whether it is the person’s old or young friends who happen to break their phones in a given week.

Across both instruments, we obtain peer effect estimates of similar magnitude. Having one addi-

tional friend who purchases a new phone in a given week increases an individual’s own probability

of buying a new phone in the following week by 0.040 and 0.022 percentage points, estimates ob-

tained using the random phone loss instrument and the contract renewal instrument, respectively.

These estimated effects are large relative to the weekly probability of buying a new phone of about one

percentage point. We argue that much of the communication between friends about the new phone

purchase that drives the observed peer effect occurs off the Facebook platform, and to a substantial

extent through real-world interactions. Consistent with this interpretation, we show that peer effects

from geographically proximate friends are larger than peer effects from friends who live further away.

In addition to exploring the immediate response of an individual’s own purchasing behavior to

new phone acquisitions by her friends, we also analyze the extent to which this situation generates

new purchases instead of pulling forward already-planned future purchases. We find that a random

phone loss by an individual has a positive effect on the total number of phones purchased by her

friends in each of the following ten months, though the magnitude of this effect starts to decline after

about three months. Peer effects thus cause an increase in the total number of phone purchases, at least

over intermediate horizons. Quantitatively, having one extra friend purchase a new phone increases

an individual’s own probability of purchasing a new phone over the next 4 months by 0.6 percentage

points, relative to a baseline probability of buying a new phone over this horizon of about 14.6%.

In the next step, we explore heterogeneities in peer effects along characteristics of potential influ-

encers and potentially influenced individuals. We focus on heterogeneities in the local average treat-

ment effects of the random phone loss instrument, which has the most power in the baseline specifi-

cation, but find similar patterns of heterogeneity in the corresponding OLS estimates. We observe that

close friends on Facebook exert a larger influence on one another than friends with weaker tie strength.

We also find large heterogeneities in the peer effects exerted by different demographic groups, but lit-
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tle variation in individual susceptibility to influence along the same demographic characteristics. For

example, less-educated individuals have the largest effects on their friends’ purchasing behaviors, but

these individuals are no more likely to be influenced by phone purchases of their friends. These het-

erogeneities in peer influence have important implications for understanding the effectiveness of seed

marketing campaigns, which target a small set of early adopters who can generate follow-on demand

through peer effects. We also find that those individuals who exert larger peer effects are generally

more price sensitive, measured as the effect of a price cut for a phone model on the probability of pur-

chasing that model. This result suggests that the difference between the elasticities of aggregate and

individual demand induced by peer effects is even larger than implied by the average peer effect.

In the second part of the paper, we explore whether peer effects are limited to the brand purchased

by the peer, or whether there are demand spillovers to other brands. To do so, we first predict the

probability that each individual would purchase a phone in each of three broad brand categories:

iPhone, Galaxy, and “other.” We then exploit variation in this probability among friends who randomly

break their phones in a given week (conditional on the average of this probability among all friends) to

instrument for the number of friends who purchase phones of that particular brand. The identification

assumption is similar to before: conditional on the characteristics of all friends and other controls, it

is random whether, in a given week, the friends who happen to lose their phones are those who are

likely to replace it with a new iPhone or those who are likely to purchase a new Samsung Galaxy.

There are three key take-aways from the cross-brand analysis. First, for all three brand categories,

positive peer effects are largest for phones in the same category as that purchased by the peer. Second,

these same-brand peer effects are largest for less-well-known but cheaper “other” phones, and they

are smallest for the expensive and well-known iPhones. These facts suggest that social learning is an

important part of the explanation for these peer effects, since social learning should be more impor-

tant for lesser-known brands.1 The third main take-away relates to across-brand demand spillovers.

Specifically, we find that when a friend buys a new phone, this purchase increases a person’s own

propensity of buying a phone from competing brands on the same operating system, while reducing

their propensity of buying a phone from competing brands on different operating systems. In other

words, while some of the observed positive same-brand peer effects arise by generating entirely new

demand, others come from pulling demand away from rival firms with competing operating systems.

Importantly, these demand spillovers across operating systems could have easily been positive. For

example, a user who buys a Galaxy might have caused her friends to desire a new phone—of any type,

including iPhones—through a “keeping up” effect. The observed across-brand demand spillovers are

thus again consistent with an important social learning component: when your friends use a certain

operating system, you are more likely to learn about that system. This would increase your demand

for all phones using that operating system (even those produced by a different manufacturer), in part

at the expense of phones using competing operating systems.2

1Our results do not allow us to rule out that “keeping up” effects (which are likely to be larger for more expensive brands)
also contribute to the observed peer effects; instead, our findings suggest that such effects cannot be the entire story.

2In addition to social learning, network externalities provide a second mechanism that might explain some of the patterns
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The observed across-brand demand spillovers highlight that peer effects have important compet-

itive implications for firms: losing a customer to a competitor does not only mean missing out on

positive peer effects that this customer could have had, but may also lead to future losses of other

customers through competitive peer effects. These implications of peer effects for the demand of com-

petitors’ brands complement a large literature that has explored similar spillover effects of advertising

(e.g., Sahni, 2016; Shapiro, 2018; Sinkinson and Starc, 2018). In that literature, researchers regularly

find positive demand spillovers to non-advertised competitor brands. Our finding of negative across-

brand demand spillovers highlights that the implications of peer effects for the competitive dynamics

between firms can be qualitatively different to those from the spillover effects of marketing activities.

Our paper contributes to a literature that has studied the role of peer effects in a wide range of eco-

nomic and financial decisions. Peers have been shown to influence consumption choices (e.g., Gools-

bee and Klenow, 2002; Mobius, Niehaus, and Rosenblat, 2005; Kuhn et al., 2011; Moretti, 2011; Aral

and Walker, 2012; Gilchrist and Sands, 2016; De Giorgi, Frederiksen, and Pistaferri, 2016; Han, Hirsh-

leifer, and Walden, 2016) as well as a variety of household financial decisions (e.g., Duflo and Saez,

2003; Hong, Kubik, and Stein, 2004; Bursztyn et al., 2014; Beshears et al., 2015; Ouimet and Tate, 2017;

Kuchler and Stroebel, 2020), housing market decisions (e.g., Bailey et al., 2019, 2018b), and charitable

giving (e.g., DellaVigna, List, and Malmendier, 2012). Peer effects also play an important role in ex-

plaining education decisions (e.g., Hoxby, 2000; Sacerdote, 2001, 2011), program participation (Dahl,

Løken, and Mogstad, 2014), labor market outcomes (Mas and Moretti, 2009), mutual fund investments

(Kuchler et al., 2020), international trade flows (Bailey et al., 2020b), and the spread of and response to

COVID-19 (Bailey et al., 2020c; Kuchler, Russel, and Stroebel, 2020). Prior work has studied peer effects

in product and technology adoption decisions; one focus of this literature has been how social learning

can help the diffusion of new technologies in developing countries (e.g., Foster and Rosenzweig, 1995;

Conley and Udry, 2010; Oster and Thornton, 2012; Kremer and Miguel, 2007; Björkegren, 2018). In

the developed world, peer effects have been shown to affect the adoption of new technologies such as

solar panels (e.g., Bollinger and Gillingham, 2012; Allcott and Kessler, 2019). Within the literature that

has studied peer effects in product adoption decisions, we are the first, to our knowledge, to identify

important competitive spillovers to other models and brands. Our setting and research design also

allow us to expand our understanding of peer effects along other important dimensions. For example,

we are able to document that peer effects can generate additional demand rather than just a retiming

of demand. We can also identify characteristics of influential individuals, as well as the correlation of

peer influence with price sensitivity.

of across-brand demand spillovers. Such network externalities would arise if having more friends use a certain operating
system would increase a user’s own value of using that same operating system. In the context of cell phones, network
externalities may primarily come from the use of the FaceTime video messaging app, which is only available on the iOS
operating system. However, while we cannot rule out that such network externalities play some role, such externalities
cannot explain a number of the patterns we document in this paper, all of which would naturally follow from a social
learning story (e.g., the fact that peer effects are largest for the same model rather than equally spread across all phones
of the same operating system, or the fact that we find peer effects to decline in time since model release). As a result, our
findings are only consistent with a story in which there is at least a substantial social learning component to peer effects (in
addition to potential other components coming from “keeping up” desires or network externalities).
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1 Data Description
A central challenge for studying peer effects in product adoption decisions is the need to observe

both social networks and product adoption behavior within the same data set. We overcome this

measurement challenge by exploring peer effects in phone purchasing decisions using de-identified

data from Facebook, the world’s largest online social networking site. In the U.S., Facebook primarily

serves as a platform for real-world friends and acquaintances to interact online, and people usually

only add connections to individuals on Facebook whom they know in the real world (Jones et al.,

2013). As a result, friendships on Facebook provide a good approximation of real-world friendship

networks (see Bailey et al., 2018a, 2020a).

For each Facebook user, we observe basic demographic information such as their date of birth,

gender, and county location, as well as the set of individuals that they are connected to. Using the lan-

guage adopted by the Facebook community, we call these connections “friends.” The vast majority of

Facebook users regularly access their Facebook accounts from their cell phones.3 For these mobile ac-

tive users, we observe data on the cell phone carrier and the phone model used to access the Facebook

app. We use these data to identify when a user obtains a new phone.4 Since we can only observe a

new phone model when the user logs into the Facebook app for the first time from the new device, we

can generally pinpoint the timing of the purchase to roughly the week that a new device is acquired.

Our unit of observation is therefore the purchasing behavior of a user in a given week.

In our analysis, we focus on U.S.-based Facebook users between 18 and 65 years of age who

have between 100 and 1,000 friends on Facebook. We also require users to access Facebook on their

phones across two consecutive weeks in order to be able to observe the timing of potential phone

purchases. Our primary sample covers the purchasing behavior of these individuals across four con-

secutive weeks in May 2016. These weeks were chosen to be relatively far away from both major phone

release dates and major shopping holidays (such as Black Friday or Labor Day), which could confound

our estimates. We are left with about 329 million user-weeks as our baseline estimation sample.

Table 1 provides summary statistics on our sample. The average user in our sample is 35 years

old, with a 10th–90th-percentile age range of 21 years to 53 years. Roughly 58% of users in our sample

are male. Fifty-five percent of the users have an iPhone and 27% have a Samsung Galaxy; the rest of

the users are relatively fragmented across many other phone models. The average user has a phone

that is 389 days old, while the median user has a phone that is just over ten months old. The 10th–90th-

percentile range of phone age is between 63 days and 777 days. About 0.93% of all users acquire a new

phone in a given week. The average user has 323 friends in the sample as well as about 3 new phone

purchases among friends in a given week.
3Facebook reports in its July 26, 2018, 10-Q filing: “Substantially all of our daily and monthly active users [. . . ] access

Facebook on mobile devices.”
4The process of determining when a user obtains a new phone involves a number of steps, including the removal of likely

work phones or phones borrowed from a friend, as well as dropping temporary phones with only a few log-ins. Because
Facebook only records the device model but no unique device identifier, we are unable to detect switches between two
devices of the same model. The overwhelming majority of switches that we detect are to phones released no more than nine
months prior to the start of our sample, suggesting they are new purchases rather than hand-downs from friends and family.
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Table 1: Summary Statistics

Mean P10 P25 P50 P75 P90

User Characteristics

    Age (Years) 35.3 12.1 21 25 33 44 53

    Male 0.58 0.5 0 0 1 1 1

    Phone Age (Days) 388.8 327.3 63 152 317 544 777

    Buys Phone (%) 0.93 9.59 0 0 0 0 0

    Has iPhone 0.55 0.50 0 0 1 1 1

    Has Galaxy 0.27 0.44 0 0 0 1 1

Friend Characteristics

    Friends in Sample 322.4 202.8 124 165 258 424 631

    Friends with Phone Purchases 3.00 2.87 0 1 2 4 7

    Friends with Public Statuses 59.5 53.8 17 26 43 73 120

    Friends Posting about Breaking/Losing Phone 0.26 0.64 0 0 0 0 1

    Friends at Phone Age Threshold 1.83 1.84 0 0 1 3 4

Standard
Deviation

Note: Table presents summary statistics for our baseline panel. The unit of observation is a user-week, and our data consist
of approximately 329 million such user-weeks. For each characteristic, we present the mean, standard deviation, and the
10th, 25th, 50th, 75th, and 90th percentiles of the distribution.

2 Research Design
We next outline how we use the data described above to identify peer effects in cell phone-purchasing

behavior. Our most basic specification seeks to understand a Facebook user’s decision to buy a new

phone in a given week as a function of the prior or contemporaneous purchases of her friends. The

challenge for identifying such peer effects is that individuals tend to be friends with others who are

similar to them across many dimensions (McPherson, Smith-Lovin, and Cook, 2001; Bailey et al.,

2018a,b). For example, in the context of our study, an Apple enthusiast may primarily be friends

with other Apple enthusiasts. Even in the absence of peer effects, these friends may thus have sim-

ilar phone-purchasing behaviors, such as buying a new iPhone around its release date. As a result,

observing a correlation in purchasing behavior within friendship groups does not necessarily provide

evidence for peer effects (see Manski, 1993, for an extended discusssion).

Our approach to solving this identification challenge is to develop instrumental variables for the

purchasing behavior of a person’s friends. A successful instrument should shift the purchasing behav-

ior of a person’s friends without affecting the purchasing behavior of that person through any channel

other than peer effects. We propose two instruments that meet this exclusion restriction: first, the num-

ber of a user’s friends who randomly lose their phones, and second, the number of friends who have

owned their phones for exactly two years, and whose contract is thus likely up for renewal. We next

discuss both of these instruments in more detail.
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2.1 Random Phone Loss Instrument

Our first instrument is based on the idea that individuals are substantially more likely to buy a new

phone in a week in which they lose or break their current phone. As a result, an individual who has

more friends randomly losing their phones in a given week is likely to have more friends buying a

new phone in that week. Provided that a random phone loss of a friend only influences the probability

that a user herself purchases a new phone through peer effects from any replacement purchase by the

friend, the number of friends who experience a random phone loss can then be used to instrument for

the number of friends who purchase new phones.

The first step in constructing this instrument is to determine which individuals randomly break

or lose their phones in a given week. We do so by analyzing public posts on Facebook that relate to

such events. Figure 1 provides examples of such posts, which were relatively common during our

sample period, since users regularly posted on Facebook to explain to their friends why they were not

returning calls or text messages.

Figure 1: Sample Posts About Randomly-Lost Phones

We use a machine learning-based approach to classify the universe of public Facebook posts in a given

week, allowing us to assign an indicator 1(RandomPhoneLossi,t) to individuals who post about a ran-

dom phone loss in that week.5 Specifically, we use two tools from the natural language processing

literature: word embeddings and convolutional neural networks. We will provide a brief overview of

these tools here; a longer explanation of our methodology is available in Appendix A.1.

Our approach relies on word embeddings, which are low-dimensional vectors that provide a ge-

ometric representation of the meaning of the corresponding word. Words with similar meanings will

be represented by similar vectors, and the spatial relationships between vectors will capture complex

5We only have access to posts from individuals who have set their privacy settings for that specific post to “public” at the
time of the analysis, rendering the post visible to any individual with the URL. Table 1 shows that while the average person
in our sample has about 322 friends in total, only about 60 of those friends have set their statuses as public.
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relationships between the corresponding words (see Mikolov, Yih, and Zweig, 2013, for details). For

instance, after converting words to their embeddings, the embedding most similar to (
−−→
King−−−→Man +

−−−−→
Woman) is

−−−→
Queen. In our application, we use 200-dimensional word embeddings that were trained us-

ing all articles on the English edition of Wikipedia. Using these vectors, we can represent each public

Facebook post as a matrix, consisting of the stacked vectors of its constituent words.

After generating this numerical representation of each public post, we next use a convolutional

neural network (CNN) to determine which posts describes a user breaking or losing her phone. CNNs

were originally developed for applications in computer vision, and they expand upon traditional neu-

ral networks by transforming the underlying data to make use of its spatial configuration. In the case

of image data, CNNs account for relationships between nearby areas of the image; in natural language

applications, CNNs make use of the order of words within a passage. This allows us to distinguish-

ing between sentences such as “I broke my phone when I was with my friend John” and “I just saw my

friend John break his phone”. We train the CNN on a large sample of manually-classified posts using

10-fold cross-validation, and then use it to classify all public posts in our sample. The resulting model

performs quite well on unseen posts, identifying many idiosyncratic examples such as “R.I.P phone.

You will be missed” that would be difficult to capture with regular expression searches.6 Appendix A.1

includes further details on the training process and the model’s performance. In total, we identify

around 65,000 public posts about broken or lost phones per week. Table 1 shows that, in a given week,

the average person has 0.26 friends who publicly post about breaking or losing their phones.7

Panel A of Figure 2 visualizes the first stage of the random phone loss instrument. It shows the

probability of purchasing a new phone in each week, splitting individuals according to their posting

behavior in week 0. The green-triangle line corresponds to individuals who publicly post about a

random phone loss in week 0. The orange-circle line corresponds to individuals with a public post

that was not about a random phone loss, and the blue-square line corresponds to individuals without

a public post in week 0. In the weeks prior to posting about a random phone loss, the purchasing

behavior of individuals who post about such a phone loss in week 0 has a broadly similar trend to that

of other individuals, although it has a somewhat higher level. (As we describe below, our research

design will account for this higher level). In week 0, those individuals who posted about a random

phone loss have a substantial increase in the probability of acquiring a new phone. Specifically, about

10% of individuals with a post identified by our classifier get a new phone in the week of posting about

losing their phone. The probability of purchasing a new phone remains slightly elevated in the week

following the post about the random phone loss before returning to its baseline rate.

While the probability of getting a new phone spikes in the week of the post and remains elevated

in the following week, the sum of these probabilities is far below 100%, meaning that we do not ob-

6It is likely that the CNN identified this particular post after observing hand-classified posts such as “My phone is dead”
in the training sample, combined with the fact that “dead” and “R.I.P” occupy similar positions in the embedding space.

7We have also implemented a model using a regular expression-based classifier, which produced an instrument that had
less power but found largely similar results as our baseline analysis. This simpler classifier is used to reinforce our main
model in an approach inspired by ensemble classifiers. See the discussion in Appendix A.1.
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Figure 2: Random Phone Loss Instrument

(A) Probability of New Phone, by Week
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(B) Probability of New Phone, by Week (Split by Age)
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Note: Panel A shows the probability of purchasing a new phone in a given week, splitting users by their posting behavior in
week 0. The line Random Phone Loss Post (green triangles) shows the behavior of users who have a public post in week 0 that
relates to a random phone loss. The line Other Post (orange circles) captures the behavior of those who have a public post
in week 0 that does not relate to a random phone loss, while the line for No Post (blue squares) tracks the behavior of those
individuals without a public post in week 0. Panel B shows the probability that a user of each age group buys a phone in the
weeks after posting about randomly losing or breaking her phone (RPL = Random Phone Loss).

9



serve a new phone purchase for every individual whom we identify as having posted about a random

phone loss. There are several reasons for this result. First, our classifier is likely to include some “false

positive” posts that we incorrectly identify as indicating a random phone loss. For example, our clas-

sifier cannot perfectly separate posts that mention that someone’s “phone is dead” into those that talk

about a dead battery and those that talk about a permanently broken phone.8 A second explanation is

that some users may continue to use a phone with a broken screen or damage of another type. Users

may also be able to repair broken phones or recover lost or stolen phones. Finally, our data do not al-

low us to identify individuals who replace a broken phone with a new phone of the exact same model.

In these instances, however, peer effects are likely to be small, and not observing these switches is

unlikely to substantially bias our results.

Based on this classification of a random phone loss, a basic identification strategy would instru-

ment for the number of friends who purchase a new phone in a given week with the number of friends

who publicly post about randomly breaking or losing their phones in that week. The associated identi-

fying assumption would be that the number of friends losing or breaking their phones in a given week

is conditionally random. To strengthen the validity of this exclusion restriction, we include a number

of controls in specifications using this first instrument. One possible concern is that the purchasing be-

havior of individuals with friends who are more likely to lose or break their phone, or with friends that

are more likely to post about it publicly, may be fundamentally different. To address such concerns,

we directly control for the number of friends who have posted publicly about losing or breaking their

phones in the previous year as well as for the number of friends who have public statuses by default.9

While posting about breaking or losing one’s phone leads to a sizable increase in the average

probability of obtaining a new phone, there is substantial heterogeneity in the size of this increase

across individuals with different characteristics. For example, Panel B of Figure 2 shows that, among

individuals who publicly post about losing their phones in week 0, the probability of getting a new

phone in that week is 11% for individuals over the age of 30, while it is only about 9% for individuals

under 30 years of age. How many friends purchase a phone in a given week is therefore not only

affected by how many friends lose their phones in that week, but also by which friends lose their phones.

Under our assumption that phone loss is a conditionally random event, which friends lose their phones

is also plausibly random. We use this insight to further improve the power of our instrument.

8Properly weighting “false positives” and “false negatives” was an important consideration when constructing our clas-
sifier, and we chose a threshold that balanced the number of the posts found with the conditional probability of switching
of the posters. We also trained an alternative classifier that was better at rejecting false positives and gave a conditional
Pr(BuysPhonei,t|1(RandomPhoneLossi,t)) of 13.4%, although the number of posts found decreased by 85%. This associated
decrease in the number of true positives thus weakened our instrument.

9Additionally, it is important that having friends lose or break their phones in a given week is not correlated with individ-
uals losing or breaking their own phones in that week. One reason for such a correlation could be common experiences that
are correlated with breaking or losing a phone (e.g., a bachelor party, a trip to the beach, or time spent in a high-crime area).
To assess whether phone loss events are temporally correlated across friends, we perform a series of tests on users who post
about losing or breaking their phones in week t, calculating the probability that one of their friends posts about losing or
breaking their phones in each week from t− 5 to t + 5. We were unable to find evidence that users lose or break their phones
at the same time as their friends (see Appendix A.1.2). Even though such concerns seem to be minor, we include a control
indicating whether the user has posted about a random phone loss in all regressions that make use of this instrument.
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Specifically, we exploit small-sample variation in whether those friends who randomly lose their

phones in a given week are more or less likely to purchase a new phone, conditional on the distribution

of this propensity among all friends. For example, one could use the average age among people post-

ing about a random phone loss as an instrument, controlling for the average age among all friends.

Many other demographic characteristics are also correlated with a user’s conditional probability of

buying a new phone, and all of these characteristics (and their interactions) could serve as potential

instruments. However, using many of these potentially weak instruments would risk overfitting the

first stage, therefore biasing our instrumental variables estimates towards the OLS estimates. Since

fitting the first stage is a prediction exercise, recent literature suggests using machine learning tools to

optimally fit the first stage when there are a large number of possible instruments (e.g., Belloni, Cher-

nozhukov, and Hansen, 2014; Mullainathan and Spiess, 2017; Peysakhovich and Eckles, 2017; Athey,

2018; Chernozhukov et al., 2018). We build on the ideas in this work and use a neural network to create

a single propensity score from the large space of possible instruments.

ProbBuyRandomPhoneLossi,t = Prob(1(BuysPhonei,t)|Xi,t,1(RandomPhoneLossi,t) = 1). (1)

The vector Xi,t collects a large number of observable characteristics of user i at time t.10 We train the

neural network using data from a separate sample of weeks, 2016-15 to 2016-17 and 2016-23 to 2016-25.

This approach, which is similar to the jack-knife IV approach in Angrist, Imbens, and Krueger (1999),

allows us to avoid overfitting in-sample noise, thus ensuring that we obtain unbiased estimates when

building our instruments based on ProbBuyRandomPhoneLossi,t. Appendix A.2 provides details on

the design and the performance of the neural network used to estimate the propensity score.

We then construct the first instrument for the number of friends of person i who purchase a phone

in week t by summing these propensities among user i’s friends who post about a random phone loss:

InstrumentLose
i,t = ∑j∈Fr(i) 1(RandomPhoneLossj,t) · ProbBuyRandomPhoneLossj,t, (2)

where Fr(i) is the set of all users who are friends with user i. As discussed above, we add controls for

the average of ProbBuyRandomPhoneLossj,t among all of a user’s friends in the IV regressions with this

instrument. This step allows us to exploit small-sample variation in the probability of replacing a lost

phone of the friends who randomly lose their phones in a given week, without capturing a possible

direct relationship between the average conditional probability among a user’s friends and that user’s

own probability of purchasing a new phone in that week.11

10We use the following characteristics as features when training our neural networks: current phone age, current phone
model, carrier, user age, user gender, user browser, Instagram usage flag, user education level, U.S. state, friend count,
activity flags, account age, profile picture flag, number of friendships initiated, and area-level average income, where we
measure location at the zip code level for location-services users, and at the county level for all other users.

11We also explore the possibility that the group of friends who would ever publicly post about a random phone loss is a
selected subset of all of a user’s total friends. In this case, controlling for the average conditional probability among all of a
user’s friends may not suffice to eliminate a possible direct relationship between the instrument and the errors in the second
stage. To address this possibility, we also control for the average conditional probability of purchasing among a user’s friends
for whom 1(RandomPhoneLossi,t) = 1 at any point in the year prior to our sample period. In the case of a user having no
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Figure 3: Conditional Independence of Baseline Instruments

(A) Random Phone Loss Instrument—Unconditional
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(B) Random Phone Loss Instrument—Conditional
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(C) Contract Renewal Instrument—Unconditional
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(D) Contract Renewal Instrument—Conditional
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Note: Panel A shows the unconditional relationship between a user’s own predicted probability to buy a new phone,
ProbBuyUncondi,t, on the horizontal axis and the random phone loss instrument, InstrumentLose

i,t , on the vertical axis.
Panel B shows the same relationship but conditions on the controls included in Equation 6, with the exception of
ProbBuyRandomPhoneLossj,t, the horizontal axis variable. Panels C and D in the bottom row show the analogous rela-
tionships for the contract renewal instrument.

While the exclusion restriction is inherently untestable, we verify its plausibility by exploring whether

our instrument is conditionally related to important observable user characteristics. In particular, for

each user, we first calculate the unconditional probability that she purchases a phone in a given week,

ProbBuyUncondi,t, based on observable characteristics of the user (see Appendix A.2 for details). In

Figure 3, we then show the correlation between our instruments and the predicted probability that the

user purchases a phone in a given week. In the top row, we explore the random phone loss instrument

(equation 2). Panel A shows unconditional relationships. We find that InstrumentLose
i,t is correlated

such friends, we set their average probability to a value outside the normal range of the data (in our case, to -1), and we
include a binary control for missing data. This procedure allows us to avoid dropping observations when the user had no
friends who had 1(RandomPhoneLossi,t) = 1 in the prior twelve months.
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with a user’s own predicted probability of buying a new phone, probably due to homophily. How-

ever, Panel B shows that after controlling for the characteristics of a user’s overall group of friends—

which are also included as controls in our IV specifications—there is no residual relationship between

InstrumentLose
i,t and the estimated probability that an individual herself purchases a new phone. This

lack of conditional correlation between our instrument and observable user characteristics that influ-

ence purchasing decisions supports the credibility of our identifying assumption that no such correla-

tion exists with unobservable user characteristics, either.

It is important to point out that the set of compliers in a specification using InstrumentLose
i,t to

instrument for the total number of phone purchases by friends is likely different to the set of compliers

when using the total number of friends who break their phones. To the extent that these compliers

differ in the strength of the peer effects they exert, the two approach may therefore estimate different

local average treatment effects (LATEs), though it is unclear whether either one of these LATEs would

be preferrable in terms of being more representative of a population average treatment effect.

2.2 Phone Age Instrument

Our second instrument is based on the observation that during the period of our study, there were two

main contract structures in the U.S. cell phone market. The first involved month-to-month contracts

in which a user would purchase her own phone. This type of contract was offered primarily by T-

Mobile, AT&T, and MetroPCS. The second contract structure involved carriers subsidizing customers’

phone purchases in exchange for a two-year service commitment at a set price. Service of this kind

was offered primarily by Sprint and Verizon during that time.

Figure 4 shows the weekly probability of a user obtaining a new phone by the age of their current

phone. Panel A shows that this probability is generally increasing in phone age, but it spikes when

phones cross the two-year age threshold (the dark grey area). Panel B, which shows this probabil-

ity separately by carrier, highlights that this spike is concentrated among customers whose service is

provided by Verizon or Sprint.

As before, we use a neural network to estimate, for each consumer, the probability of buying a

new phone in the week when his current phone is two years old:

ProbBuy2yi,t = Prob(1(BuysPhonei,t)|Xi,t,1(Phone2yOldi,t) = 1), (3)

where 1(Phone2yOldi,t) = 1 is an indicator that is set to one for individuals whose phones are between

721 and 735 days old. As suggested by Panel B of Figure 4, a key predictor here is a user’s current car-

rier, but other demographic characteristics included in Xi,t also influence this conditional probability.

We then instrument for the number of friends who get a new phone with the sum of ProbBuy2yj,t

across all friends who are at the two-year phone age threshold in a given week:

Instrument2y
i,t = ∑j∈Fr(i) 1(Phone2yOldj,t) · ProbBuy2yj,t. (4)
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Figure 4: Probability of New Phone by Phone Age

(A) Pooled Probability
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(B) Probability Split by Carrier
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Note: Panel A shows how a user’s probability of getting a new phone varies with the age of their current phone. Panel
B shows the same split by user carrier.

14



Since individuals who have more friends with older phones are plausibly different from individuals

with friends who have younger phones, we directly control for the number of friends whose phones

are between 721 and 735 days old. We also add controls for the number of friends who were at the two-

year phone age threshold in the twelve months prior to our sample, as well as the average value of

ProbBuy2yj,t among those people, in addition to the average value of ProbBuy2yj,t among all friends.

By including these controls, we are effectively using only small-sample variation in the conditional

probabilities of a user’s friends who are at the contract renewal threshold in a given week, without

using variation in the number of these friends. The bottom row of Figure 3 shows that after including

these controls, there is no relationship between Instrument2y
i,t and a user’s own estimated probability

of purchasing a phone in a given week, ProbBuyUncondi,t.

2.3 Empirical Specification and Inference

Using these instruments, we estimate instrumental variables (IV) regressions to measure peer effects

in the cell phone market. The first and second stages of the IV regression, respectively, are:

FriendsBuyPhonei,(t−1,t) = δInstrumenti,t−1 + ωXi,t + ei,t (5)

1(BuysPhonei,t) = β ̂FriendsBuyPhonei,(t−1,t) + γXi,t + εi,t. (6)

The key dependent variable in the second stage, 1(BuysPhonei,t), is an indicator of whether individual

i purchases a new phone in week t. The vector Xi,t represents a rich set of fixed effects and linear

controls based on characteristics of the users and their friends. In addition to the controls we already

discussed above, we include fully-interacted fixed effects for user characteristics (age bucket × gen-

der × education × state × week), device characteristics (device × carrier × phone age buckets ×
week), and friend characteristics (number of friends × number of friends switching phones in the last

6 months × week). We also control for the predicted (unconditional) probability that a user purchases

a phone in that week, ProbBuyUncondi,t. In the Appendix, we show that our baseline results are robust

to different specifications of the controls and fixed effects.

Our instrument in the first-stage regression is based on shocks to friends in week t− 1 (e.g., the

number and characteristics of friends who broke their phones in that week). The IV estimate β cor-

responds to the total user purchases in week t that were induced by the instrument, scaled by the

first-stage estimate δ of how many relevant friend purchases were induced by the instrument. This

scaling should account for all friend purchases caused by the instrument that occurred prior to the

user’s purchasing decision in week t and that could thus have influenced that purchasing decision. As

mentioned above, our data do not allow us to precisely pinpoint the timing of purchases, and Figure 2

shows that friends who randomly lose their phones in week t− 1 have a somewhat elevated purchas-

ing probability in week t. An analogous, though weaker, increase in purchasing in week t occurs when

a user reaches the contract renewal threshold in week t− 1. We therefore include all friend purchases

in weeks t and t− 1 in our endogenous variable, FriendsBuyPhonei,(t−1,t):

15



FriendsBuyPhonei,(t−1,t) = ∑j∈Fr(i) 1(BuysPhone)j,t−1 + ∑j∈Fr(i) 1(BuysPhone)j,t. (7)

This approach potentially overcounts the relevant number of instrument-induced purchases of new

phones by friends, since it can include some friend purchases in week t that occurred after the user has

already purchased a phone in that week; as a result, the second-stage coefficient estimates of β provide

a conservative measure of the magnitude of peer effects.12

Inference. In any setting where peer effects might be important (whether or not they are the focus of

the analysis), these peer effects can introduce a correlation in the error terms across individuals. Such

a correlation would invalidate the independence assumptions used to derive the asymptotic proper-

ties of standard estimators. In a world with non-overlapping network communities, one can account

for this possible across-observation dependence due to peer effects by clustering standard errors at

the level of the community. For complete networks like the one we are studying, statistical inference

remains a relatively open area of research, and our vast sample size limits our ability to use the social

graph to fully model the structure of the variance-covariance matrix (similar issues arise in a litera-

ture that explores the use of cluster-robust estimators when working with spatially dependent data,

see Bester, Conley, and Hansen, 2011). We therefore follow a number of recent papers to explore the

robustness of our statistical inference to various approaches of constructing standard errors. In partic-

ular, Eckles, Kizilcec, and Bakshy (2016) and Zacchia (2020) propose to partition the social graph into a

number of communities with limited cross-community dependence, and to then cluster the standard

errors at the community level.13 Even though the presence of some across-cluster friendship links im-

plies that there remains the potential for across-cluster correlation in the error terms, this clustering

approach substantially reduces potential biases in standard errors from such dependencies. Appendix

A.3 shows that our standard errors are essentially unaffected when moving from heteroskedasticity-

robust standard errors to community-robust standard errors. This suggests that in our setting, statisti-

cal inference is not substantially affected by residual across-individual dependencies in error terms.

3 Peer Effects in Phone Purchasing
We next explore how a user’s propensity to purchase a new phone is affected by the phone purchases of

her friends. We begin by presenting the baseline estimates of peer effects. Section 3.1 then explores the

12Using only friend purchases in week t − 1 as the endogenous variable would instead undercount the relevant friend
purchases induced by the instrument, since it would miss purchases that occurred early in week t (before the user’s own
purchasing decision in that week). It would thus understate the first stage (and overstate the second stage), providing an
upper bound on the magnitude of peer effects rather than a lower bound, as our baseline specification does.

13Operationally, we start with a data set that uses a distributed variant of the Kernighan-Lin algorithm to divide the global
Facebook social graph into about 21,000 distinct communities. Individuals in our sample are assigned to their communities
created by this graph. The 0.2% of our sample assigned to communities with fewer than 100 other members of our sample are
grouped into a “residual” community (these individuals are likely to be recent immigrants, who are members of communities
where most members are outside the United States). Overall, the 81 million users in our primary sample are assigned to 5,140
distinct communities with an average size of 15,910. The average user in our sample has 53.4% of her friends within the same
community; at the 10th/50th/90th percentile of our sample, this numer is 21%/54%/84%.
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timing of these peer effects, showing that an individual acquiring a new phone increases the aggregate

propensity that her friends purchase a new phone for at least several months. In Section 3.2, we explore

heterogeneities in both influence and susceptibility to influence across demographic characteristics.

Baseline Results. Column 1 of Table 2 presents OLS estimates from regression 6. The results suggest

that having one more friend purchase a phone in weeks t or t− 1 increases a person’s own propensity

to buy a phone in week t by 0.032 percentage points. This estimate is large relative to a baseline proba-

bility of purchasing a new phone of just under one percentage point per week. However, as discussed

above, this OLS estimate might also pick up the effects of common shocks or preferences in addition

to any peer effects. The rest of Table 2 therefore presents causal effects from IV estimations. Columns

2 and 3 show the reduced forms from the random phone loss instrument and the contract renewal

instrument, respectively, while columns 4 and 5 show the corresponding second-stage estimates.

Table 2: All Instruments—All Phones

OLS Reduced Form Second Stage

(1) (2) (3) (4) (5)

Broken Phone Contract Renewal Broken Phone Contract Renewal

# of Friends Buying (t-1 and t) 0.032 0.046 0.024 0.040 0.022

(0.000) (0.007) (0.014) (0.005) (0.013)

Controls + Fixed Effects Y Y Y Y Y

Mean Dependent Variable 0.93 0.93 0.93 0.93 0.93

Number of Observations 329m 329m 329m 329m 329m

Effective F-Statistic 4,627 878

Note: Table shows estimates of regression 6. Column 1 presents the OLS estimate, columns 2 and 3 present reduced form
estimates using our two instruments, and columns 4 and 5 present the corresponding second-stage IV estimates. The depen-
dent variable in all specifications is an indicator for whether user i purchases a new phone in week t. All coefficients reported
are multiplied by 100 to ease interpretability. We include interacted fixed effects for individual i’s demographics (age bucket
× state × gender × education), individual i’s beginning-of-week device (current phone × current phone age in buckets of
50 days × carrier) and individual i’s friends (total friends × number of friends switching phones in the previous 6 months).
We control linearly for the user’s unconditional probability of buying a new phone, estimated as described in Appendix A.2
and for the average conditional purchase probability among a user’s friends. In columns 2 and 4, we additionally control
for individual and friend posting behavior (the number of friends with public statuses, the number of friends posting in a
given week, the number of friends who post about random phone loss in the twelve months prior to our sample, the average
conditional probability of buying a new phone among friends who posted about random phone loss in the prior twelve
months, and a dummy for whether the user herself posted about a random phone loss in the given week). In columns 3 and
5, we additionally control linearly for the number of friends whose phones are between 721 and 735 days old, the number of
friends who have had phones of this age in the twelve months prior to our sample, and the average conditional probability
of buying a new phone among those friends. We report Olea and Pflueger (2013) effective F-Statistics. Standard errors are
clustered at the level of the community (see the discussion in Section 2.3 and Appendix A.3).

Both second-stage IV estimates are similar in magnitude to the OLS estimate: the IV estimate is slightly

larger than the OLS estimate when using the random phone loss instrument, and it is slightly smaller

than the OLS estimate when using the contract renewal instrument; neither of these differences is

statistically significant. This similarity in estimated peer effects across OLS and IV specifications is

perhaps surprising, since one might have expected that common shocks or common preferences would

lead to a substantial upward bias in the OLS estimates. In contrast, our result here suggests that—after

17



controlling for observable characteristics of individuals and their friends—correlated unobservable

shocks or preferences induce at most a small bias to our OLS estimates, at least when analyzing the

effect of peer purchases on the near-contemporaneous purchasing behavior of individuals.

In terms of magnitudes, a simple back-of-the-envelope calculation suggests that a new phone pur-

chase by an individual in one week leads to an additional 0.08 phone purchases through peer effects in

the following week.14 Put differently, a little less than one in ten phone purchases causes a follow-on

purchase in the subsequent week through peer effects.15

One interesting question is whether the estimated treatment effects are the result of individuals

hearing about their friends’ new phone purchase through Facebook or through offline interactions.

We think that at most a small part of the overall observed peer effect comes from interactions on

Facebook—indeed, in this setting, we view Facebook primarily as a tool to measure phone purchases

and social networks, instead of the primary medium for information flow. There are a number of rea-

sons for this. First, only about 2.3% of individuals who post about losing their current phone actually

post about purchasing a new phone in the following weeks, and even then, Facebook posts are usually

seen by only about a quarter of an individuals’ friends (Bernstein et al., 2013). Second, we highlight be-

low that peer effects from geographically proximate friends are substantially larger, suggesting an im-

portant role of in-person interactions in propagating information about new phone purchases. Third,

we show below that the effect of a friend’s phone purchase on own purchasing behavior is strong for

a number of months following the friends’ purchase. We think it is much more plausible that this

effect comes through hearing about the friend’s purchase over time (as well as through second-order

peer effects), instead of the delayed effect capturing the purchase of a new phone many months after

viewing a social media message—in particular given the evidence that individuals remember only a

fraction of social media content even immediately after viewing it (Counts and Fisher, 2011).

The difference in magnitude across the two IV estimates in columns 4 and 5 of Table 2 highlights

that the local average treatment effects (LATEs) we capture using each of these instruments may differ

from the average treatment effect in the population. Specifically, our first instrument captures the

average peer effects of individuals who post publicly about losing their phones (and who then quickly

purchase a new one) on those individuals’ friends. Our finding suggests that the peer effects exerted

14The average peer of people in the sample has 258 friends (which is lower than the average number of friends of people
in the sample, which was restricted to only include individuals with at least 100 friends), and a new purchase by these peers
increases the probability of each friend purchasing a new phone the following week by about 0.032 percentage points (the
average of the two IV estimates). A simple back-of-the-envelope estimate of the overall effect is thus 258× 0.00032 ≈ 0.08.

15We rule out two possible alternative explanations for the patterns in Table 2. First, we explore if they might primarily
capture the correlated behavior of family members as a result of contract incentives such as “Buy One, Get One Free” offers
that are sometimes available for members of the same family plan. When we repeat our analysis after excluding each user’s
family members from their friends (where we identify family members through a combination of self-reports and model-
based imputations), we find baseline estimates of very similar magnitude. In addition, while “Buy One, Get One Free” offers
might in principle explain correlated purchases that are close in time, they could not explain the long-lasting patterns we
show in Section 3.1. We also find that our estimates are not driven by Facebook disproportionately advertising cell phones to
people whose friends recently experienced a random phone loss, or whose friends’ contracts were up for renewal. To show
this, we repeat our baseline regressions only for users who did not see any cell phone ads on Facebook during our sample
period. The peer effects we estimate in this sample are near-identical to those in the full sample. The finding is consistent
with our institutional understanding of the scope of ad targeting.
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by these individuals may be somewhat larger than the average peer effects in the population, perhaps

because individuals who quickly replace a (partially) broken phone care a lot about phones, and are

therefore more likely to influence their friends. In addition, due to homophily, the users who are

friends with these people may themselves be more interested in phones, so their own purchasing

behavior may be more affected by peer effects than that of the average person. In contrast, the IV

coefficient estimated using the contract renewal instrument identifies the average peer effects from

individuals who keep the same phone for two years before replacing it. As can be seen from Table 1,

a two-year-old phone is in the right tail of the phone age distribution. This result suggests that users

who wait that long to replace their phones may be less interested in up-to-date technology than the

average user, perhaps explaining why eventual purchases by these individuals have a below-average

effect on the purchasing behavior of their peers.

These differences in local average treatment effects raise the possibility for substantial hetero-

geneities in peer effects, both along characteristics of the potential influencers and characteristics of

the individuals who are potentially influenced.16 We explore these heterogeneities, which have impor-

tant implications for firms’ marketing strategies and price-setting behaviors, in Section 3.2.

3.1 Peer Effects at Longer Horizons

The specifications reported in Table 2 analyze the effects on an individual’s phone-purchasing behavior

immediately following a new phone acquisition by a peer. In this section, we explore two related ques-

tions. First, for how long does the purchase of a phone by a peer influence an individual’s own pur-

chasing behavior? Second, do these peer effects primarily represent the retiming of already-planned

purchases, or do they generate purchases that would not have happened otherwise?

To address these questions, we expand the horizon over which we measure a user’s phone pur-

chasing behavior to include up to 43 weeks following the initial phone purchase by a peer. Specifically,

we construct dependent variables of the form 1(BuysPhonei,(t,t+3)), 1(BuysPhonei,(t+4,t+7)), and so on,

to capture whether a user purchases a new phone during a number of four-week periods. In Figure 5,

we report the β-coefficients from using these variables as dependent variables in regression 6. Though

these regressions are similar to our baseline specification reported in Table 2 , the interpretation of the

longer-horizon effects is somewhat more complicated. In particular, since individuals and their friends

often have many friends in common, second-degree peer effects become increasingly relevant at longer

time scales: a friend’s purchase in week t may influence a common friend’s purchase in week t + 1,

which in turn affects the user’s own purchasing decision in week t + 2. The coefficients presented in

Figure 5 provide the LATEs associated with a friend purchasing a new phone in weeks t or t + 1 on

the user purchasing at various horizons, capturing both the direct effect of the initial friend purchase

and any higher-order effect of purchases by common friends that were caused by the initial purchase.

16The differences in LATEs across instruments also suggest a potential alternative interpretation of the observation that
OLS and IV estimates have similar magnitudes. In particular, it could still be the case that the OLS estimate presents a
substantially upward-biased estimate of the true average peer effect in the population, and at the same time that the IV
estimates both correspond to LATEs capturing the peer effects from relatively influential individuals, with the two effects
approximately offsetting each other.
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Figure 5: Peer Effects at Alternative Horizons
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Note: Figure shows estimates from IV regression 6 at various horizons. The dependent variables are indicator variables for
whether a user purchases a new phone in the given four-week period. The IV coefficients capture the total effect of friend
purchases in weeks t = 0 or t =1, induced by a random phone loss in week t = 0. Error bars show 95% confidence intervals.

A number of patterns emerge from the IV coefficients in Figure 5. First, having an extra friend pur-

chase a new phone in response to a random phone loss is not associated with an elevated probability

of a user herself purchasing a new phone in the weeks prior to the random phone loss by the friend

(this probability is even marginally lower in the month prior to the friend’s random phone loss, though

the effect is barely significant and tiny in magnitude). This finding provides further support for the

exclusion restriction associated with the random phone loss instrument, which requires that individ-

uals with and without a randomly-induced phone purchase by a friend would behave conditionally

similarly in the absence of the random friend purchase.

Second, Figure 5 shows that the effect on user purchasing of having an extra friend randomly buy

a new phone in week t = 0 is roughly as large over the first four weeks following the friends’ purchase

as it is over each of the subsequent 3 months. After that, the aggregate effect declines and generally

stabilizes. During the period that we observe, the aggregate effect on own purchasing behavior in

response to a friend replacing a lost phone does not show signs of a reversal. This finding implies

that peer effects induce an increase in the total level of phone purchases, and not merely a shift in the

timing of a fixed number of purchases.17 The observed cumulative increase in purchasing probability

17This result does not mean that no individuals have their purchases pulled forward through peer effects. Indeed, in all
weeks t′ > 1, there are two countervailing forces that determine the aggregate effect of a random phone purchase in week
t = 0 and t = 1 on the total purchases by all the person’s friends. Firstly, there are potentially negative effects on the
purchasing probability of people who had their purchases pulled to previous weeks 0 < t < t′. However, any such effects
are more than offset by positive effects on the number of total purchases through delayed or higher-order peer effects.
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is economically meaningful: having an additional friend who purchases a phone in week t increases

the chance that a user purchases a phone between weeks t and t + 15 by 0.6 percentage points. In our

sample, the average chance that a given user purchases a cell phone over this period is 14.8%, so a

friend’s purchase increases the user’s own probability of buying a new phone in the next four months

by about 4% of the baseline probability.

3.2 Heterogeneities in Treament Effects

The previous observation that our two instruments identified LATEs of different magnitudes hinted at

the presence of substantial heterogeneities in peer effects. In particular, it suggested that those friends

whose behavior was shifted by each of our instruments might be differentially influential on average.

To further explore such heterogeneities, we next analyze how peer effects vary with the observable

characteristics of users and their friends. These heterogeneities are estimated with IV regressions us-

ing the random phone loss instrument, which has the most power; Appendix A.4 provides the exact

regression specifications. Directionally, the patterns of heterogeneity in the resulting LATEs are gener-

ally similar to the patterns of heterogeneity in the corresponding OLS estimates, suggesting that they

are not only a feature of the local average treatment effects identified by our random phone loss instru-

ment, but also of the (potentially biased) average treatment effects obtained through OLS analysis.

Heterogeneity by Relationship Strength and Geographic Proximity. We first explore whether the

magnitude of the peer effects we observe is affected by the strength of the relationship of the user-

friend pair. To measure the closeness of friendship links, we rank a user’s friendships according to a

model of tie strength based on characteristics such as mutual friends and interaction frequency, similar

to Gilbert and Karahalios (2009). The left panel of Figure 6 shows that the estimated peer effect from a

friend in the top 25 closest friendships is more than twice as large as the peer effect from a friend who

is not in the top 25 (we choose this cutoff, since tie strength declines much less strongly across ranks

beyond the top 25 friends). It is reassuring that peer effects from closer friends are larger. In fact, there

are a number of possible explanations that are consistent with this finding. First, purchases by these

friends may be more salient to a user, perhaps because she is more likely to interact with these friends.

Second, it is likely that individuals are more willing to trust information that they receive from closer

peers. Third, the desire to keep up with closer friends may be higher than the desire to keep up with

friends who are less close.

We also explore whether peer effects from geographically proximate friends are larger than those

from friends who live further away. The right panel of Figure 6 shows that the estimated peer effect

from a friend who lives in the same zip code is more than twice as large as the peer effect from a friend

who lives in a different zip code. This evidence is highly consistent with our previous interpretation

that much of the observed peer effects are the result of in-person interactions between individuals,

which are more likely to occur when two individuals live close to each other than when they live

further apart.
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Figure 6: Peer Effects Heterogeneity by Relationship Strength and Geographic Proximity
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Note: Figure shows IV estimates of equation 6 using the random phone loss instrument. In the left panel, we split each
user’s friends into those inside and outside the top 25 using a model of friendship intensity. In the right panel, we split all
location-services friends into those living in the same zip code and those living in a different zip code as the user. Error bars
show 95% confidence intervals.

Heterogeneity by Friend Characteristics. We next explore heterogeneities in the magnitude of peer

effects exerted by different individuals. Identifying characteristics of socially influential individuals

is an important exercise for marketing researchers and practitioners, and “influencer campaigns” are

now an integral part of most consumer marketing strategies (see Ferguson, 2008; Tucker, 2008; Bak-

shy et al., 2011; Aral and Walker, 2012). Here, we contribute to this research effort by documenting

demographic characteristics that are indicative of large social influence, and by exploring how social

influence and price sensitivity are correlated across demographic groups. We discuss that the latter

correlation has important implications for firms’ dynamic price-setting behavior.

Figure 7 documents heterogeneity in peer effects along peer demographic characteristics. Panel A

shows the “per friend” peer effect, corresponding to the causal effect of a purchase of a new phone by

a person with those characteristics on average on each of their friends. Panel B measures the “overall”

peer effect, which adjusts the per-friend peer effect by the fact that different demographic groups have

differentially many friends. This second category is of particular interest for designing influencer-

based marketing campaigns. We find that younger individuals exert larger peer effects on each of their

friends. Combined with the fact that these individuals have more friends on average, we find that

the overall peer effect exerted by individuals declines substantially in age. This finding suggests that

acquiring younger customers is more valuable to firms than acquiring older customers, at least in the

phone market, since younger customers will generate more follow-on demand through peer effects.

We also find that the peer effects exerted by individuals who report high school as their highest ed-

ucation level are larger than the peer effects exerted by individuals who report having gone to college.

In addition, we find that the per-friend peer effect exerted by individuals is declining in the number

of friends that they have, perhaps because the marginal friend is less close. However, despite the de-

clining influence on each friend, the overall peer effects do not follow a similarly monotonic pattern.

Users with between 200 and 400 friends seem to have the most influence in aggregate, having a large
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Figure 7: Peer Effect Heterogeneity by Friend Characteristics
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Note: Figure shows IV estimates of equation 6 using the random phone loss instrument. Estimated peer effects are split by
characteristics of the peer with the random phone loss. Panel A shows the mean peer effect a user in each group exerts on
each of her friends. Panel B reports the average total influence of a user in each group on all of her friends, computed by
multiplying the coefficients found in Panel A with the average number of friends in each demographic group. We report the
full specifications in the Appendix. Error bars show 95% confidence intervals.

per-friend peer effect and relatively many friends. We find that women are somewhat more influential

than men, although these differences are relatively small. We also find that users from middle-income

areas are more influential than users from richer or poorer areas. Users who lose a phone that is less

than one year old have the largest influence on the purchasing behavior of their friends (recall from

Table 1 that the median phone age in our sample was 317 days). In turn, individuals who do not regu-

larly replace their phones—and who are therefore likely to not value new technology as much—exert

smaller peer effects on their friends. The peer effects of these people may be lower both because they

are less likely to talk to their friends about having a new phone, and because they may be perceived as

less-valuable sources of information when they do talk to their friends.18

Peer Influence vs. Price Sensitivity. One important implication of peer effects is that the aggregate

demand curves faced by firms are more elastic than individual demand curves (see Glaeser, Sacerdote,

and Scheinkman, 2003). The magnitude of this difference depends in part on the correlation between

individuals’ price elasticities and the magnitude of the peer effects they exert. Specifically, if a price cut

primarily attracts additional demand from individuals who exert only small peer effects, the difference

between the individual and aggregate demand curves will be substantially smaller than when a price

cut primarily increases the demand of individuals who exert large peer effects.

In our data, we do not have individual-level estimates of price sensitivity. To explore whether

the most influential individuals are likely to have relatively high or relatively low price sensitivity,

18When comparing the 16 IV coefficients presented in the left Panel of Figure 7 to the corresponding coefficients from
an OLS specification, we obtain a correlation of 0.81, suggesting that our conclusions regarding the relative strength of
peer effects of different individuals may generalize beyond the specific LATE studied here. The main difference is in the
heterogeneity by age, where there are fewer differences across age groups in the OLS specification than in the IV specification.
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we split individuals into eight mutually-exclusive groups along the interacted dimension of user age

(above or below 35 years), user phone age (above or below one year), and user gender. We estimate the

per-friend influence and the total influence for each of these eight groups using instrumental variables

specifications similar to the ones described above. We also measure the price sensitivity of each group

by calculating the percentage increase in the number of users in each group who purchase an iPhone

6s or iPhone 6s Plus in the week before and after a major price cut in September 2016.19

We next explore the correlation between peer influence and price sensitivity across the eight groups.

We find the correlation with per-friend influence to be 0.89, and the correlation with total influence to

be 0.90.20 This result suggests that price cuts disproportionately attract extra demand from individu-

als who are relatively influential, and that the deviations between individual and aggregate demand

curves in this market are thus likely to be large. The higher implied price elasticity of aggregate de-

mand will push firms towards setting lower prices than they would in the absence of peer effects.21

The positive correlation between price sensitivity and peer influence may also provide an expla-

nation for the sometimes-puzzling observation that many markets clear through queuing rather than

through price adjustments. If higher prices disproportionately reduce demand from those individuals

with large peer effects on their friends, then an optimal dynamic pricing strategy might be willing to

trade off lower revenues today in return for additional sales generated through peer effects in future

periods. In other words, while increasing the price would increase revenues today, it might reduce

overall long-run revenues due to substantially lower peer effects going forward. In scenarios in which

demand exceeds supply, and firms do not want to increase prices to avoid selling to less-influential

individuals, an alternative assignment mechanism is required. Assignment via queuing is likely to

disproportionately select individuals who might exert the largest peer effects among those willing to

buy at the low price. This mechanism can help rationalize, for example, why Apple does not increase

the price for its iPhones, despite the large queues outside its stores around device release dates. Similar

mechanisms might be at work in other settings where limited supply is assigned through queuing that

can help select individuals who will exert particularly large peer effects and thus generate subsequent

sales (e.g., new sneakers, new restaurants, or the famous Cronuts).

19On September 7, 2016, Apple announced an immediate price cut of $100 for the iPhone 6s and the iPhone 6s Plus. We
use purchasing data from one week on each side of this date to measure price sensitivity, but our findings are robust to
comparisons that use several weeks on either side of the price cut to determine the price sensitivity of each group. In the
week following this price cut, we observe a 4% increase in the number of iPhones registered, with heterogeneity in the size
of this jump across demographic groups.

20We obtain similar correlations when we estimate peer effects with OLS regressions (acknowledging the potential biases
in these specifications), suggesting the patterns may be generalizable beyond the specific LATE considered here. We also
expand this exercise by further splitting each group into those with more or fewer than 300 friends, providing us with
estimates of peer influence and price sensitivity for 16 mutually-exclusive groups. Despite the fact that the estimates for
peer influence are substantially noisier, the correlations across these objects are 0.66 and 0.22 for the per-friend and total peer
effects, respectively. Running IV regressions with more endogenous variables is not computationally feasible, preventing us
from extending our analysis to consider the correlation between price sensitivity and peer effects at finer demographic splits.

21Through this channel, peer effects are a force that lowers markups and improves consumer welfare and allocative effi-
ciency in this market. Appendix A.5 presents a simple model that formally explores this relationship between the correlation
of peer influence and price sensitivity, the aggregate demand elasticity, and price markups. It is possible that peer effects
may affect optimal price-setting through other channels (see Easley and Kleinberg, 2010; Campbell, 2013; Garcia and Shele-
gia, 2018), and the overall effect of peer effects on prices depends on the relative importance of these various channels.
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Heterogeneity by User Characteristics. Figure 8 explores heterogeneities in the susceptibility to influ-

ence of different individuals, separating users along the same demographic characteristics as in Figure

7. There are only small differences in susceptibility to influence across most demographic groups. The

exception is that a user’s number of friends is a major determinant of their susceptibility to influence

from the average friend. The findings are consistent with the marginal friend being less close, and

therefore less influential for a user’s purchasing behavior.

Figure 8: Peer Effect Heterogeneity by User Characteristics
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Note: Figure shows IV estimates of equation 6 using the random phone loss instrument. Estimated peer effects are split by
user characteristics. We report the full specifications in the Appendix. Error bars show 95% confidence intervals.

Heterogeneity by Peer and User Characteristics. In the final set of heterogeneity analyses, we explore

peer effects along characteristics of both the user and the peer. For example, we explore whether all

individuals are primarily influenced by peers who are similar on observable characteristics, or whether

all individuals are most influenced by the same types of peers, regardless of their own characteristics.

Panel A of Figure 9 shows the cross-heterogeneity of peer effects by area-level income. Across all

user income groups, friends from middle-income areas tend to be the most influential. Panel B shows

that, for both high school-educated and college-educated users, high school-educated friends have the

largest peer effect. Panel C shows that men and women are both more influenced by female friends

than by male friends, though this effect is somewhat larger for female users. Panel D shows that

younger users generally have the largest peer effects on their friends, with friends aged 25 years or less

having particularly large effects on users older than 40 years. The only exception is the large effect of

friends over 40 years old on users below 25 years old, although these peer effect estimates are not very

precise, and they could be capturing correlated purchasing behavior between parents and children.

Overall, these results suggest that individuals who are more influential on average are, in general,

more influential on all users, not just those who are similar to them on demographic characteristics.
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Figure 9: Peer Effect Heterogeneity by Pairwise Characteristics
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Note: Figure shows instrumental variables estimates of equation 6 using the random phone loss instrument. Estimated peer
effects are split by user and peer characteristics. We report the full specifications in the Appendix. Error bars show 95%
confidence intervals.

4 Peer Effects for Specific Phone Purchases
In the previous section, we explored how a user’s decision to purchase any new phone is affected by

whether her friends recently acquired a new phone. In this section, we study whether the observed

peer effects are specific to the phone brand purchased by the peer, and explore whether there are

positive or negative spillovers to competing brands.

We focus on the two major cell phone lines, Apple’s iPhones and Samsung’s Galaxy phones, which

are used by 55% and 27% of users in our data, respectively. We pool the other highly fragmented

brands into a residual category, which includes a variety of phones operating largely on the Android

system. The set of brand categories we consider is thus given by C = {iPhone, Galaxy, Other}. We

are then interested in understanding how a friend’s purchase of a phone in brand category c ∈ C

affects a user’s probability of buying a phone in the same brand category, as well as their probability of

buying phones in a different category. This investigation allows us to explore, for example, whether a
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friend’s purchase of an iPhone increases a user’s own demand for all phones, including those of iPhone

competitor Galaxy, or whether it primarily pulls demand away from Galaxys and towards iPhones.

Identification Challenge and Empirical Approach. To give a concrete example of the challenge with

identifying peer effects in phone brand choice, imagine that there are two individuals, Amy and Bob,

both of whom have five friends. Among Amy’s friends, four would buy an iPhone if they were to

replace their current phones, while only one of Bob’s friends would buy an iPhone. In addition, ho-

mophily on characteristics such as tech-savvyness imply that both Amy and Bob are similar to their

friends in terms of phone preferences: even in the absence of peer effects, Amy would likely buy an

iPhone while Bob would probably buy a different phone. As a result, standard OLS specifications

that regress whether people buy a certain phone brand on whether their friends buy that same brand

would not necessarily identify peer effects, since correlated preferences (and correlated shocks) would

induce similar purchasing behavior even in the absence of any peer effects.

To document the role of peer effects in determining the purchases of specific phone brands, we

thus adapt the IV strategy described above. To conceptualize our approach, imagine now that there

is a third person, Carl, who is very similar to Amy. Carl also has five friends, out which four would

purchase an iPhone if they were to replace their phones, and Carl’s own propensity to purchase an

iPhone is also very similar to that of Amy. Now imagine that, in a given week, both Amy and Carl

have one of their friends break their phones. By chance, it happens that Amy’s unlucky friend is one

that is likely to replace her broken phone with an iPhone, while Carl’s unlucky friend is likely to replace

it with a Galaxy. Importantly, this variation in the phone brands bought by Amy’s and Carl’s friends

is not driven by differences in the composition of their friends—our thought experiment holds this

composition constant by construction. Instead, the brands purchased by the Amy’s and Carl’s friends

are determined by which of their friends randomly break their phones in a given week, something that

should not be correlated with Amy’s and Carl’s normal purchasing preferences after controlling for the

brand preferences of all friends. As a result, any difference in Amy’s and Carl’s probabilities of buying

different phone brands in the weeks following their friends’ random phone losses (and subsequent

phone replacements) is informative about the causal role of peer effects.

To operationalize this research design, we first construct a measure of each individuals’ probability

of purchasing a phone of each brand. Specifically, for each phone brand c, we fit a neural network to

predict the propensity that individual i will purchase a phone of brand c in week t, based on observable

characteristics of that individual. We predict both the unconditional probability of buying a phone of

brand c, ProbBuyUncondc
i,t, and the propensity of such a purchase conditional on posting about a

random phone loss, ProbBuyRandomPhoneLossc
i,t (the conditional and unconditional propensities are

highly correlated across individuals). We estimate these propensities using information on individuals’

demographics and current phones (see Appendix A.2 for details). For instance, we find that older users

prefer iPhones, while all users are more likely to buy a phone of the same brand as their current device.

As before, neural networks allow us to uncover non-linear and interactive relationships between the

various observable characteristics.
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Our research design then proposes to use the sum of these predicted propensities of the friends

who randomly lose their phones as instruments for the number of friends buying a phone of the re-

spective brand, controlling for the average propensities among all friends. As described above, this is

based on the assumption that, conditional on the characteristics of all of a user’s friends, it is random

whether, in a given week, the friends who lose their phones are those who are more likely to pur-

chase iPhones, Galaxys, or other phones. Formally, we calculate, for each individual and each phone

brand c, the average conditional probabilities of purchasing phones in each brand category among all

her friends as given by equation 8; this will be the central variable to control for the composition of

different people’s friends, which could be correlated with those people’s own phone preferences.

AllFriendsAvgProbBuyRPLc
i,t =

1
|Fr(i)|∑j∈Fr(i) ProbBuyRandomPhoneLossc

j,t (8)

We also sum up this probability among her friends that randomly lose their phones in a given week

as given by equation 9; this will be our instrument for the number of friends purchasing a phone of a

particular brand:

LossFriendsSumProbBuyRPLc
i,t = ∑j∈Fr(i) 1(RandomPhoneLoss)j,t · ProbBuyRandomPhoneLossc

j,t. (9)

We indeed find homophily in the propensities to buy phones of a certain brand. The left column

Figure 10 plots, for each phone brand c, a user’s own ProbBuyUncondc
i,t on the horizontal axis and our

instrument for friend purchases of category c, LossFriendsSumProbBuyRPLc
i,t, on the vertical axis. We

find that individuals who themselves are more likely to purchase a certain brand usually have friends

that are also more likely to buy that brand, although the relationships are not always monotonic.

The right column of Figure 10 shows the same relationship as the left column, but conditions

on a number of control variables also included in our regressions, the most important of which is

AllFriendsAvgProbBuyRPLc
i,t. Conditional on the brand preferences in the overall friend population,

the brand preferences of those friends who randomly lose their phones in a given week are essentially

uncorrelated with the brand perferences of person i, at least to the extent that those preferences are

captured by observable characteristics such as demographics and current phone brand. This finding

makes it more plausible that they are also uncorrelated with brand preferences based on unobservable

characteristics of person i, an assumption that is at the heart of our identification strategy.22

Regression Specification. To study peer effects at the brand level, we perform three instrumental

variables regressions, one for each c′′ ∈ C. We fit three first stages for each regression, i.e., one for each

of the three brand categories c′ ∈ C that a friend could have bought:

22As described above, it is possible that the sample of users who post about losing or breaking their phones is a selected
sub-sample of a user’s friends. If this were the case, controlling for the average probability among all friends may not
accurately capture the distribution from which the randomly-shocked friends are drawn. We address these concerns by also
controlling for the average value of ProbBuyRandomPhoneLossc

j,t among a user’s friends who posted about losing or breaking
their phones in the twelve months prior to our sample. Our results are unaffected by the inclusion of these controls.
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Figure 10: Conditional Independence of Brand Instruments
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(E) Other—Unconditional
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Note: Figure shows the relationship between a user’s own predicted probability to buy a specific new phone of brand
category c, ProbBuyUncondc

i,t, on the horizontal axis and the instrument, LossFriendsSumProbBuyRPLc
i,t, on the vertical axis.

The first row shows this relationship for c = iPhone, the middle row for c = Galaxy, and the bottom row for c = Other.
The left column shows the unconditional relationship. The right column shows the same relationship but conditions on the
controls included in Equation 11, with the exception of ProbBuyUncondc

i,t, the variable plotted on the horizontal axis.
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FriendsBuyPhonec′
i,(t−1,t) =∑c∈C δc′

c LossFriendsSumProbBuyRPLc
i,t+ (10)

∑c∈C φc′
c AllFriendsAvgProbBuyRPLc

i,t + ωXi,t + ei,t.

Our three second stages (one for each c′′ ∈ C) are of the form:

1(BuysPhone)c′′
i,t =∑c′∈C βc′′

c′
̂FriendsBuyPhonec′

i,(t−1,t)+ (11)

∑c′∈C Φc′′
c′ AllFriendsAvgProbBuyRPLc′

i,t + γXi,t + εi,t.

The indicator variables 1(BuysPhone)c′′
i,t capture whether person i purchased a phone of brand cate-

gory c′′ in week t. The coefficients of interest are comprised by the series of βc′′
c′ , which capture the

effects of a friend purchasing a phone in category c′ on an individual purchasing a phone in cate-

gory c′′. The central control variable in both the first and second stages of the regression is the av-

erage conditional probability of buying a phone of each brand acrosss all of individual i’s friends,

AllFriendsAvgProbBuyRPLc
i,t. The vector Xi,t includes the controls and fixed effects described in Sec-

tion 2.3, as well as controls for the unconditional probability that user i buys a phone of each type c ∈ C

in week t, given by ProbBuyUncondc
i,t, and the average of these propensities among the user’s friends.

We also estimate a fourth specification with 1(BuysPhone)i,t as the dependent variable, which allows

us to examine whether friend purchases of certain brands led to more overall user purchases.

Since some of the (positive or negative) spillovers across brands would likely materialize only over

time, we also study the effects of a friend purchase on the cumulative probabilities of phone purchases

in different brand categories over the subsequent weeks and months. We take an approach similar to

that outlined in Section 3.1, constructing dependent variables of the form 1(BuysPhone)c′′
i,(t,t+24). We

then perform a second set of instrumental variables regressions of the form outlined in Equation 11,

replacing the original dependent variables with these multi-period cumulative purchase indicators.

As discussed in Section 3.1, the coefficient estimates in these longer-horizon regressions should be

interpreted as the “total” peer effect caused by a friend purchasing a phone of brand c at time t− 1 or

t, including the higher-order peer effects through purchases of common friends that were induced by

this initial purchase.

Estimates of Brand-Level Peer Effects. Table 3 shows results from regression 11. Columns 1–4 an-

alyze a user’s purchasing behavior in the week after the friend’s random phone loss, analogous to

the baseline specification in Table 2, while columns 5–8 analyze the cumulative purchasing behavior

in the 24 weeks following the friends’ random phone loss. Columns 1 and 5 show the effects on an

individual’s probability of purchasing an iPhone, columns 2 and 6 display the effects on an individ-

ual’s probability of purchasing a Galaxy, while columns 3 and 7 show the effects on an individual’s

probability of purchasing a phone in the “Other” category. Columns 4 and 8 show the effects on the

individual’s probability of purchasing any new phone.
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Table 3: Peer Effects in Phone Purchasing—Category-Level Analysis

(1) (2) (3) (4) (5) (6) (7) (8)

iPhone Galaxy Other Any Phone iPhone Galaxy Other Any Phone

Friends buy iPhone 0.027 -0.002 -0.007 0.018 0.340 -0.006 -0.172 0.162

(0.005) (0.004) (0.004) (0.007) (0.069) (0.022) (0.043) (0.059)

Friends Buy Galaxy -0.002 0.047 0.019 0.065 -0.335 0.658 0.521 0.844

(0.009) (0.009) (0.009) (0.016) (0.058) (0.047) (0.058) (0.087)

Friends buy Other -0.016 -0.012 0.074 0.046 -0.368 0.043 1.229 0.904

(0.007) (0.007) (0.009) (0.013) (0.051) (0.038) (0.064) (0.079)

Controls + Fixed Effects Y Y Y Y Y Y Y Y

Mean Dependent Variable 0.38 0.29 0.25 0.93 11.74 6.44 5.79 23.97

Number of Observations 329m 329m 329m 329m 329m 329m 329m 329m

Dependent Variable: Buys between t and t+1 Dependent Variable: Buys between t and t+24

Note: Table shows estimates of regression 11. In columns 1–4, the dependent variables measure purchasing probabilities
between weeks t and t + 1; in columns 5–8, the dependent variables measure cumulative purchasing probabilities between
weeks t and t + 24. We include interacted fixed effects for individual i’s demographics (age bucket × state × gender ×
education), individual i’s device (current phone × current phone age in buckets of 50 days × carrier) and for individual i’s
friends (total friends × number of friends switching phones in the previous 6 months). We control linearly for the users’
unconditional probabilities of buying a new phone in each category c, and for the average conditional and unconditional
probabilities of purchasing a phone in each category among the users’ friends. We additionally control for individual and
friend posting behavior (the number of friends with public statuses, the number of friends posting in a given week, the
number of friends who post about random phone loss in the twelve months prior to our sample, the average conditional
probability of buying a phone of each type c among friends who posted in the prior twelve months, and a dummy for
whether the user herself posted about a random phone loss in the given week). Standard errors are clustered at the level of
the community (see the discussion in Section 2.3 and Appendix A.3).

We find that friend purchases in each of our three brand categories lead a user to increase their overall

probability of purchasing a new phone (see columns 4 and 8). In all categories, the same-brand peer

effects are positive and larger than any across-brand peer effects. For instance, a friend purchasing a

Samsung Galaxy primarily increases an individual’s own probability of also purchasing a Galaxy—

both in the period immediately following the friend’s purchase and over longer horizons. In terms

of magnitude, the same-category peer effects are largest for devices in the “Other” category and are

smallest for iPhones. These findings are consistent with a substantial part of the observed peer effects

being the result of information acquisition through social learning. In particular, during our sample

period, iPhones were the most well-established brand, suggesting a smaller role for information ac-

quiring through peers; on the other hand, social learning would likely have been most important for

the more obscure phones in the fragmented “Other” category.

In addition to these large and positive same-brand peer effects, we also find heterogeneous across-

brand demand spillovers. Specifically, we find large positive spillovers from purchases of Samsung

Galaxy phones to purchases of phones in the “Other” category; these two brand categories share the

Android operating system. This positive demand spillover is also consistent with an important role

played by social learning: while most of the learning from a friend’s phone purchase is about the pre-

cise brand bought by the friend, an individual may also learn about features of the Android operating
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system, making her more likely to buy any type of Android phone. There are fewer spillovers in the

other direction, and the small negative spillover from purchases of phones in the “Other” category to

purchases of Samsung Galaxy phones is not statistically significant.

On the other hand, demand spillovers tend to be negative across brands that use different operat-

ing systems. Friend purchases of phones in the Galaxy or “Other” categories (which largely use the

Android operating system) decrease user purchases of iPhones, which use the competing iOS software.

Similarly, friend purchases of iPhones tend to have a negative spillover effect to a user’s demand for

Galaxy phones and phones in the Other category. It is important to note that these demand spillovers

across operating systems could have easily been positive. First, it could have been that a user who

buys a Galaxy causes her friends to desire more expensive phones—of any type, including iPhones—

through a “keeping up” effect. Second, positive across-brand spillovers could have emerged, even

across competing operating systems, through the salience channel documented in a marketing litera-

ture that shows how advertising can increase sales of (non-advertised) options by reminding people

of their existence (e.g., Shapiro, 2018; Sinkinson and Starc, 2018). Third, positive demand spillovers to

other brands using different operating systems could have resulted from perception transfers across

competing brands (see Roehm and Tybout, 2006, for related work in the marketing literature). Our

finding of substantial negative demand spillovers to competing brands using different operating sys-

tems therefore helps researchers understand the implications of peer effects on the competitive dy-

namics between firms, and distinguish them from the spillover effects of marketing activities.

Summary of Brand-Level Findings. There are four key take-aways from the cross-brand analysis.

First, for all three brand categories, there exist large positive peer effects for same-brand purchases.

Second, these same-brand peer effects are largest for the lesser-known but cheaper phones in the

“Other” category, and they are smallest for the expensive and well-known iPhones. Third, we gener-

ally find positive different-brand demand spillovers for brands sharing an operating system, and neg-

ative different-brand spillovers for brands on competing operating systems. Fourth, positive different-

brand, same-operating-system spillovers are smaller than the positive same-brand effects. These find-

ings point towards social learning as a substantial contributor to the observed peer effects: when a

friend purchases a new phone, individuals learn about that phone brand, and, to a lesser extent, about

other phones using the same operating system. As a result, demand should increase the most for the

specific brand purchased by the friend; it should increase somewhat less for competing brands that

share the same operating system. The importance of this social learning is largest for the least-well-

known brands. Some of the incremental same-brand purchases from peer effects correspond to newly-

generated demand, and some correspond to a shifting of demand from other brands on competing

operating systems.

Peer Effects at the Model Level. In Appendix A.6, we also study peer effects at the device model level,

and explore the presence of same-brand, different-model peer effects. Specifically, we analyze whether

having a friend buy an iPhone 6s primarily increases a person’s own probability of also purchasing
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an iPhone 6s, or whether it increases the individual’s probability of purchasing an iPhone in general.

For this analysis, we cannot use an instrumental variables research design, as we do in the main body

of the paper: while observable characteristics allow us to predict whether a given individual would

purchase an iPhone or a Galaxy, it is much harder to predict whether an individual would buy an

iPhone 6 or an iPhone 6s. We therefore run OLS specifications that regress an individual’s probability

of purchasing a specific phone model on the phone model purchases of her friends. While the absolute

magnitudes of the estimates should thus be interpreted with caution, some interesting patterns emerge

about the relative size of effects for different phone models. First, same-model peer effects are more

than an order of magnitude larger than different-model peer effects. Second, these same-model peer

effects do not vary with the cost of the model, but they are decreasing in the time since the model

release, providing further evidence for an important social learning channel behind the peer effects.

Third, same-brand, different-model peer effects are more than twice as large as different-brand peer

effects. The spillovers of peer effects to other models of the same brand are largest for Apple, which

co-brands all of its devices under the iPhone brand, and smallest for LG, which does not do so.

5 Conclusion
In this paper, we document that new phone purchases by friends have substantial, positive, and long-

lasting effects on an individual’s own demand for phones of the same brand. Our research design

cannot precisely identify the channel behind the observed peer effects, but our results are most con-

sistent with an important role of social learning in explaining the observed peer effects. While peer

effects expand the overall market for phones, there can be substantial negative demand spillovers to

competitor brands on different operating systems as a result of a phone purchase by a friend. These

negative across-brand demand spillovers have important implications for firms: losing a customer to

a rival firm does not only mean missing out on positive peer effects that this customer could have had,

but will also lead to future losses of other customers through competitive peer effects. These findings

emphasize how a customer’s value to a firm exceeds the direct effect that this customers has on the

firm’s profits.

An interesting question for future work concerns the generalizability of our findings to under-

standing the decision to adopt products other than cell phones. Indeed, we hope that future research

will further broaden our understanding of the importance of peer effects in product adoption deci-

sions across a wider range of product categories (see, for example, related work by Kuchler, Stroebel,

and Wong, 2021). In this light, our research emphasizes the increasingly important role of data from

online services—such as Facebook, LinkedIn, Twitter, eBay, Mint, Trulia, and Zillow—in overcoming

important measurement challenges across the social sciences (see, for example, Baker, 2018; Giglio

et al., 2015; Einav et al., 2015; Piazzesi, Schneider, and Stroebel, 2015). Specifically, we hope that the

increasing availability of social network data, such as the Social Connectedness Index described in Bai-

ley et al. (2018a, 2020a,b,d), will help to improve our understanding of the effects of social interactions

on social, political, financial, and economic outcomes.
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APPENDIX FOR “PEER EFFECTS IN PRODUCT ADOPTION”
Michael Bailey Drew Johnston Theresa Kuchler Johannes Stroebel Arlene Wong

A.1 Random Phone Loss Instrument
In this appendix, we provide more details about our approach to identifying public posts about ran-
dom phone loss events. We also provide evidence that random phone loss shocks are not correlated
across individuals and their friends.

A.1.1 Random Phone Loss Classification

To construct our primary instrument, we need to identify users who have posted publicly about a
random phone loss event. We take two different approaches to this classification: the first applies
regular expression searches, while the second uses machine learning techniques. We find that both
classifiers perform well at identifying relevant posts, but that the machine learning-based approach is
superior to the regular expression-based classifier in terms of reducing both Type I and Type II errors.
As a result, in the paper, we construct the random phone loss instrument using posts identified through
the machine learning-based classifier.

Regular Expression Classifier. To build our regular expression-based classifier, we first compiled a
list of common phrases (such as “broke my phone” or “phone got stolen”) that were frequently used in
Facebook posts concerning random phone loss events. A complete list of phrases is provided in Table
A.1. We then automatically scanned all public Facebook posts by individuals in our sample during the
period of our study, flagging posts that contained at least one of the phrases on our list.

Using this methodology to construct the instruments generates a strong first stage: about 9% of
those individuals whose post is flagged end up purchasing a phone in the week of the post. Never-
theless, the classifier identifies a number of false positives (e.g., “So...I dropped my phone in the toilet
yesterday...!! Still works tho!!”) while failing to identify a number of more idiosyncratic descriptions of
random phone loss (e.g., “R.I.P phone. You will be missed”). These descriptions are often picked up by
our second classification model, described below, which uses a natural language processing algorithm.

Machine Learning Classifier. Our machine learning classifier is based on word embeddings, which
allow us to translate the unstructured text of the public Facebook posts into features appropriate for
machine learning models. Word embeddings are one of the most common tools used in Natural Lan-
guage Processing (NLP), a sub-field of machine learning that aims to extract insights from data ex-
pressed in a human language. They are designed to express a word as a real-valued vector, with the
direction and magnitude of each word vector learned from a set of training data. The size of the re-
sulting vectors can vary across implementations, but vectors of 100–1,000 dimensions are commonly
used; in our implementation, we use a 200-dimensional embedding. Even though these dimensions
are often not easily interpretable, the geometry of the vectors represents semantic and syntactic fea-
tures of each word, such as tense or quantity (see Mikolov, Yih, and Zweig, 2013). Similar words tend
to be represented by similar vectors (as measured by cosine similarity), and linear combinations of
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Table A.1: Regular Expressions for Post Classification

Lost Phones
%lost phone% %lost iphone% %lost cell% %lost my iphone%
%lost iphone% %lost my phone% %lost my cell%

Dropped Phones
%dropped phone% %dropped my phone% %phone dropped% %cell was dropped%
%dropped iphone% %dropped my iphone% %cell dropped% %phone got dropped%

%dropped cell% %dropped my cell% %phone was dropped% %cell got dropped%
Broken Phones

%phone%broke% %broke my iphone% %brokenphone% %cellisbroke%
%broke phone% %broke my cell% %brokeniphone% %cell?s broke%
%broke iphone% %broken cell% %brokencell% %brokecell%
%broken phone% %cell broke% %cells broke% %broke my phone%
%broken iphone% %cell is broke% %cell just broke%

Destroyed Phones
%destroyed phone% %destroyed my cell% %phone is destroyed% %cell got destroyed%
%destroyed iphone% %phone destroyed% %cell is destroyed% %destroyed cell%

%cell destroyed% %phone got destroyed% %phonedestroyed% %destroyed my phone%

%phones destroyed% %cell got destroyed% %destroyed my
iphone% %cells destroyed%

%phone was destroyed% %celldestroyed%
Killed Phones

%killed phone% %phoneisdead% %phone is dead% %cell just died%
%killed iphone% %celldead% %cell is dead% %phone got killed%

%killed cell% %cellisdead% %phone has died% %killed my phone%
%phone dead% %cell has died% %cell got killed% %killed my iphone%

%cell dead% %phone died% %killed my cell% %phones dead%
%cell died% %phone was killed% %phonedead% %cells dead%

%phone just died% %cell was killed%
Smashed Phones

%smashed phone% %smashed my iphone% %phone smashed% %phone is smashed%
%smashed iphone% %smashed my cell% %cell smashed% %cell is smashed%

%smashed cell% %phonesmashed% %phones smashed% %phone was smashed%
%smashed my phone% %cellsmashed% %cells smashed% %cell was smashed%

Shattered Phones
%shattered phone% %shattered my iphone% %phone shattered% %phone is shattered%
%shattered iphone% %shattered my cell% %cell shattered% %cell is shattered%

%shattered cell% %phone shattered% %phones shattered% %phone was shattered%
%shattered my phone% %cell shattered% %cells shattered% %cell was shattered%

Busted Phones
%busted phone% %busted my cell% %phone busted% %phone is busted%
%busted iphone% %busted my iphone% %cell busted% %cell is busted%

%busted cell% %phone busted% %phones busted% %phone was busted%
%busted my phone% %cellbusted% %cells busted% %cell was busted%

Damaged Phones
%damaged phone% %damaged my iphone% %cell damaged% %phone was damaged%
%damaged iphone% %damaged my cell% %phone got damaged% %cell was damaged%

%damaged my phone% %phone damaged% %cell got damaged%
Stolen Phones

%stole my phone% %phone stolen% %cell got stolen% %stole my iphone%
%cell stolen% %phone was stolen% %stole my cell% %phone got stolen%

%cell was stolen%
Not Working Phones

%phone stopped working% %phone not working% %cells not working% %cell is not working%
%cell not working% %phone isn?t working% %cell stopped working% %phones not working%

%phone is not working% %cell isn?t working%
Other

%phoneless% %broke%screen% %shattered%screen% %contact me here%
%cellless% %screen%smashed% %screen%crack% %no phone%

%smashed%screen% %crack%screen% %you can reach me% %screen%broke%
%screen%shattered% %contact me on% %hit me up on here%

Note: Table shows the regular expressions used to flag posts about random phone loss. % is a wildcard capturing any
number of characters (including 0), ? is a wildcard for any single character.
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word-embedding vectors contain syntax and semantic meaning. For instance, after converting words
to their embeddings, the embedding most similar to (

−−→
King−−−→Man +

−−−−→
Woman) is

−−−→
Queen.

Several approaches can be taken to learning these vectors from a corpus of text. We chose a skip-
gram-based approach, in which a neural network is trained to predict the words surrounding a given
term in the corpus. No information is provided to the model about English grammar or syntax—
all language features are learned directly from the corpus of text. To train our model, we chose the
entire English-language version of Wikipedia as our corpus. Wikipedia is a common corpus in the
NLP literature, since it covers a broad range of topics in considerable detail, a feature which helps to
train a general-purpose set of embeddings (Bojanowski et al., 2016). We train the embeddings using
FastText, a popular open-source library created by researchers at Facebook. After training the word
embeddings, we have a model that can transform any word into a 200-dimensional vector. We then
concatenate all vectors corresponding to the words in a public post, creating a 200 × N matrix that
represents the post, where N is the number of words in the post.

In the next step, we train a convolutional neural network to classify these matrices. Convolutional
neural networks (CNNs) are commonly used in natural language processing, as they allow for the
creation of very flexible non-linear models that can capture sentence context. This is important for
our task, since the ability to distinguish between sentences like “I broke my friend’s phone” and “My
friend broke my phone” is crucial. This distinction would have been hard to capture in simpler text
classification models that do not respect word order (often called “bag of words” approaches). Convo-
lutional neural networks differ from multi-layer perceptrons (or “vanilla neural networks”) in several
ways that are useful for working with text data (Kim, 2014). Specifically, CNNs create convolutional
filters that transform the underlying data between traditional layers of the neural network. These fil-
ters alter the data to amplify the features that are most relevant in the final classification step. The exact
features captured by the filters are determined automatically during the training process. In text data,
the filters usually capture and transform multi-word patterns. We employ convolutions of widths 2,
3, 4, 5, and 10 in our work. In general, these convolutions are effective at preserving medium-distance
relationships between words, allowing the algorithm to distinguish between phrases like “my phone,”
“his phone,” and “a phone.” CNNs can also employ max pooling, which is the selective dropping of
data perceived by the neural network to be unimportant. Max pooling normally occurs after a layer of
convolutions. This step is important when working with text data, since the dimensions of the input
matrix vary between observations. Max pooling allows the model to effectively drop data throughout
the process until an appropriately-sized array of features is obtained for the final classification step.

We provided substantial training data to create the final model to identify posts concerning ran-
dom phone loss events. To this end, we hand-classified around 8,000 posts picked up by the regular
expression model; hand classification identified about 40% of the posts as false positives. We added
another 1,000 hand-classified posts that referenced phones in some way but that were not picked up by
the regular expression classifier; hand classification revealed that about 20% of these posts concerned
a random phone loss, and therefore they represent false negatives for the regular expression classifier.
We supplemented these posts with 25,000 posts that had nothing to do with cell phones. The trained
model achieved a 0.94 ROC–AUC on 1,800 labeled examples that were set aside as a test set, and which
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were therefore not used in training the model (see Figure A.1).1 To create our primary instrument, we
then used the trained model to classify all public posts on Facebook in our sample weeks, identifying
those posts that the algorithm detected as being about breaking or losing a phone.

Figure A.1: ROC Curves for Post-Detection CNN
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Note: Figure shows the ROC curves for our post-detection CNN. Both the training curve and the test curve are pictured.

Due to the severe class imbalance in our classification problem, some false positives remained with the
machine learning classifier. In most cases, the classifier expressed uncertainty about these posts, with
estimated probabilities of between 10% and 30% that the posts concerned a random phone loss. Posts
to which the algorithm assigned probabilities above 0.3, on the other hand, are almost always true
positives. We thus find that we achieve a stronger first stage if we use the neural network’s outputs in
tandem with those from the regular expression, in order to give a second check on false positives. In
our final model, we therefore set 1(RandomPhoneLossi,t) = 1 if the regular expression condition was
true and the CNN’s estimated probability was higher than 0.1, or if the regular expression conditions
was false and the CNN had an estimated probability above 0.3. This methodology, which is inspired by
the notion of ensemble classifiers in machine learning, substantially reduces our false positive rate and
generates a stronger first stage than was possible with either of the two classifiers used individually.2

1ROC–AUC is a common metric used in machine learning to evaluate the performance of a predictive model. It can
be calculated by plotting a graph of a model’s true positive rate with respect to the false positive rate across all threshold
scores and finding the area under the curve of the line formed. Intuitively, it corresponds to the probability a classifier will
rank a random positive example above a random negative example (when tasked with distinguishing positive and negative
examples). Regardless of the class balance, a score of 0.5 is awarded to a meaningless model (one as good as random
guessing), while 1.0 is a perfect score.

2The thresholds may appear to be low, but we chose a threshold that balanced the number of the posts found with the
conditional probability of switching of the posters. Increasing the thresholds we use would increase the certainty that any
individual post is truly a post about a user who breaks their phone, but it would cause the number of potential posts found
to be smaller, which negatively impacts the strength of our first stage. We found that using a lower threshold (which permits
somewhat more Type II errors in order to reduce the number of Type I errors) gave us the strongest first stage, although
raising the threshold somewhat does not change our main findings.
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A.1.2 Random Phone Loss Instrument Independence

An important assumption in our empirical analysis is that random phone loss events are not correlated
across individuals and their friends. Figure A.2 provides support for this assumption. To construct this
graph, we consider two groups: users who post about breaking their phone in week t = 0 and users
who do not make any such post. For each group, we calculate the average percentage of their friends’
posts that are about breaking a phone in weeks t− 5 to t+ 5. We then graph the ratio of the percentages
for the first and second group. We see that, even though users who post about breaking their phone
tend to have more friends who themselves post about breaking their phone, the level of posting is
constant across time. There does not seem to be any indication that users and their friends tend to
disproportionately break their phones at the same time. We control for the fact that different groups
tend to post about breaking their phones at different rates by controlling for the number of the user’s
friends who break their phone in the 12 months prior to our sample. We also control for the average
level of ProbBuyRandomPhoneLoss among this group.

Figure A.2: Random Phone Loss Among Friends Relative to User Random Phone Loss
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Note: Figure shows the probability that friends of a user who breaks their phone in week 0 post about breaking their own
phones in the weeks before and after. The probability is expressed relative to that of friends of users who do not post about
a random phone loss.
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A.2 Purchasing Propensity Predictions
Throughout this paper, we use several predicted probabilities to construct both our instruments and
our controls. In a broad sense, all of these classifiers have a similar goal: we aim to predict users’ phone-
purchasing behavior based on information about their demographics, their social networks, and their
current phones. The relationships between these features and phone purchasing are complicated and
non-linear, so we fit neural networks to predict these propensities using flexible functional forms.

We train these models using data from weeks 2016-13 to 2016-15 and 2016-25 to 2016-27 (where
weeks are indicated in the format yyyy-ww),3 and we then use the models to predict propensities
for all observations in the main sample, which runs from 2016-19 to 2016-22. We use five-fold cross-
validation to select the hyperparameters for each model. The selected hyperparameters, as well as the
resulting in-sample and out-of-sample ROC–AUC scores, are summarized in Table A.2.

Table A.2: Predicting Purchasing Probabilities

Test Set
ROC–AUC

Regression Sample
ROC–AUC

Best Layer
Sizes

0.679 0.665 [10]

0.640 0.634 [20, 5]

0.705 0.699 [10, 5]

0.720 0.716 [10, 5]

0.755 0.752 [20, 5]

0.786 0.782 [20]

𝑷𝒓𝒐𝒃𝑩𝒖𝒚𝑹𝒂𝒏𝒅𝒐𝒎𝑷𝒉𝒐𝒏𝒆𝑳𝒐𝒔𝒔𝒊,	(𝒕,	𝒕&𝟏)
𝑷𝒓𝒐𝒃𝑩𝒖𝒚𝟐𝒚𝒊,(𝒕,	𝒕&𝟏)
𝑷𝒓𝒐𝒃𝑩𝒖𝒚𝑼𝒏𝒄𝒐𝒏𝒅𝒊,𝒕
𝑷𝒓𝒐𝒃𝑩𝒖𝒚𝑹𝒂𝒏𝒅𝒐𝒎𝑷𝒉𝒐𝒏𝒆𝑳𝒐𝒔𝒔𝒊,	(𝒕,	𝒕&𝟏)

𝒄

𝑷𝒓𝒐𝒃𝑩𝒖𝒚𝑼𝒏𝒄𝒐𝒏𝒅𝒊,	(𝒕,	𝒕&𝟏)
𝒄

𝑷𝒓𝒐𝒃𝑩𝒖𝒚𝑼𝒏𝒄𝒐𝒏𝒅𝒊,	(𝒕,	𝒕&𝟏)
𝒑

Note: Table shows summary statistics on the predictive power of the classifiers used and the best layer size for the classifier
with the best performance on a validation sample. All hyperparameters are determined by five-fold cross-validation. The
Test Set ROC–AUC is calculated using a held-out test data set drawn from the same sample as the training data (weeks
2016–13 to 2016–15 and 2016–25 to 2016–27). The Regression Sample ROC–AUC is calculated using data from the main
period studied in our regressions (weeks 2016–19 to 2016–22). The scores for the final three groups (which each have several
classifications for the different brands or phone models) refer to the averaged one-versus-all ROC–AUC scores for each
possible classification.

We train both conditional and unconditional models. In the unconditional models, we predict users’
purchasing decisions in weeks t and t + 1 on the basis of their characteristics in week t. For all models,
the set of observable characteristics used to train the model is as follows: current phone age,4 current
phone model, carrier, age, user browser, Instagram usage flag, state, education level, friend count, ac-
tivity flags, account age, profile picture flag, number of friendships initiated, gender, and area average
income. Since the models are unconditional, we use all user-weeks in our training period as training
data. We then predict unconditional probabilities for all users in our main sample, and we use these
unconditional probabilities as controls in the regressions in Section 3.

3Training on held-out data is important in this case, as training using in-sample data would run the risk of overfitting the
model, which would bias the IV estimates towards the OLS coefficients.

4We do not include this characteristic in our models studying switching probability at the contract renewal threshold,
as all users in the training set for this classifier have their phone age in a narrow range. This feature makes predicting the
conditional probability for users whose phone age is outside this range difficult.
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Figure A.3: Baseline Instruments

(A) Random Phone Loss Instrument
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(B) Random Phone Loss Instrument ROC Curve
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(C) Contract Renewal Instrument
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(D) Contract Renewal Instrument ROC Curve

0

.2

.4

.6

.8

1
T

ru
e 

P
os

iti
ve

 R
at

e

0 .2 .4 .6 .8 1
False Positive Rate

Pre- and Post-Sample Main Sample 45° Line

Note: Panels A and C in the left column show binscatter plots of the fit of the probabilities to purchase a new phone given the
random events underlying our two instruments: random phone loss in Panel A, and phone age of 2 years in Panel C. Panels
B and D in the right column present Receiver Operating Characteristic (ROC) curves for each of these estimated probabilities.
All plots only include users for whom 1(Instrumenti,t) = 1. The regression results using these instruments are shown in
Table 2. The “Pre- and Post Sample” is a held-out set of observations from weeks 2016–13 to 2016–15 and 2016–25 to 2016–27,
the same weeks that were used to train the data. The “Main Sample” is all observations from the period 2016–18 to 2016–22,
the period used to construct our main panel.
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Figure A.4: Brand Instruments

(A) iPhone Instrument
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(B) iPhone Instrument ROC Curve
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(C) Galaxy Instrument
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(D) Galaxy Instrument ROC Curve
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(E) Other Phone Instrument
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(F) Other Phone ROC Curve
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Note: The left column shows binscatter plots of the fit of the probabilities to purchase a new phone of a given brand for
individuals with a random phone loss. The right column presents Receiver Operating Characteristic (ROC) curves for each
of these instruments. All plots only include users for whom 1(BrokenPhonej,t) = 1. The regression results using these three
instruments are shown in Table 3. The “Pre- and Post Sample” is a held-out set of observations from weeks 2016–13 to 2016–
15 and 2016–25 to 2016–27, the same weeks that were used to train the data. The “Main Sample” is all observations from the
period 2016–18 to 2016–22, the period used to construct our main panel.
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In the conditional models, we aim to predict a user’s probability of purchasing a phone in weeks
t and t + 1, conditional on some behavior or trait in week t, such as posting about a random phone
loss or having a phone at the contract renewal threshold. We fit one such model for each of the two
instruments, and we predict each conditional probability for all user-weeks in our main sample.

In addition to the summary statistics on the model fit provided in Table A.2, Figure A.3 presents
information on the performance of the various classifiers for our two baseline instruments. The left
column shows binscatter plots of the predicted probability against the realized probability for both a
hold-out sample from our training data period (“Pre- and Post-Sample”) and the actual regression data
set (“Main Sample”). Reassuringly, the training data line up on the 45-degree line, and the regression
sample data, which were not used to train the model, also align closely. This finding suggests that our
models are relatively stable over time. The horizontal axis shows the range of predicted probabilities.
For example, we find the predicted probabilities for purchasing in weeks t and t+ 1 after posting about
a random phone loss in week t range to be between 5% and 50%. This result highlights the value of
using the computed conditional probability—rather than just the number of friends with a random
phone loss—as an instrument for the number of friends buying a phone.

We additionally fit models that predict acquisitions of particular phone types. The same features
used to generate the general switching predictions are highly predictive of which phone a user buys,
and our models therefore have strong predictive power. We create classifiers at two levels of granular-
ity. First, we train a classifier to predict a user’s probability of buying any of three mutually exclusive
and exhaustive categories of cell phones, iPhones, Galaxies, and other phones, as well as their probabil-
ity of not buying any phone. Second, as described in Appendix A.4, we predict the user’s probability of
purchasing each of the 20 most commonly-purchased phones, three residual categories (other iPhone,
other Galaxy, other), and no phone at all. For both granularities, we train unconditional models for use
as controls in our regressions: ProbBuyUncondc

i,t for the brand-level granularity, and ProbBuyUncondp
i,t

for the model-level granularity. At the brand level, we also train a classifier conditional on a user
breaking or losing their phone, ProbBuyRandomPhoneLossc

i,t; these predicted probabilities are used to
construct our instruments as described in detail in Section 4, and Figure A.4 explores the performance
of these predictors.5 Tables A.2 and A.3 show the performance of the brand-level and model-level
propensity predictions.

5We do not estimate IV regressions at the model level, since we find that the predictions within a brand tend to be highly
collinear, making first stage estimation complicated (see Appendix A.4 for further discussion).

A.9



Table A.3: Phone-Specific ROC–AUC

Unconditional Conditional on Losing Phone

Brand 0.755 0.752 0.720 0.716

    iPhone 0.734 0.734 0.757 0.758

    Galaxy 0.772 0.769 0.729 0.726

    Other 0.808 0.799 0.711 0.707

    No Purchase 0.708 0.704 0.684 0.673

Specific 0.786 0.782

    iPhone 6S 0.782 0.785

    iPhone 6S Plus 0.711 0.718

    iPhone SE 0.773 0.781

    iPhone 6 0.738 0.733

    iPhone 5S 0.720 0.716

    iPhone 6 Plus 0.680 0.688

    Other iPhone 0.706 0.689

    Galaxy S7 0.820 0.816

    Galaxy S7 Edge 0.790 0.786

    Galaxy Core Prime 0.797 0.793

    Galaxy Note 5 0.808 0.809

    Galaxy J7 0.851 0.859

    Galaxy Grand Prime 0.793 0.795

    Galaxy S5 0.758 0.741

    Galaxy S6 0.763 0.755

    Other Galaxy 0.767 0.758

    Tribute 5 0.857 0.847

    K10 0.844 0.846

    G5 0.830 0.810

    G Stylo 0.851 0.844

    Desire 626s 0.852 0.839

    One Touch 0.881 0.875

    Other 0.800 0.793

    No Purchase 0.702 0.700

Test Set
ROC–AUC

Regression Sample
ROC–AUC

Test Set
ROC–AUC

Regression Sample
ROC–AUC

Note: Table shows summary statistics on the classifiers used to predict the phone type a user purchases. Since ROC–AUC is
a score for binary classification problems, the multi-class ROC–AUC scores (bolded) represent the averaged one-versus-all
ROC–AUC scores of each individual classification problem (see also Table A.2). We do not display conditional ROC–AUC
scores for specific phones, as we report only OLS versions of these regressions due to the high correlation between within-
brand scores as discussed further in Section A.6.
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A.3 Statistical Inference – Robustness Exercises
As discussed in Section 2.3, to construct our baseline standard errors, we follow the suggestions by
Eckles, Kizilcec, and Bakshy (2016) and Zacchia (2020) and partition the Facebook social graph into a
number of communities with limited cross-community dependence, allowing us to cluster standard
errors at the community level. Starting from a sparse matrix representing the Facebook social graph, a
distributed variant of the Kernighan-Lin algorithm is used to divide the global Facebook social graph
into about 21,000 distinct communities. Individuals in our sample are assigned to their communities
created by this algorithm. The 0.2% of our sample assigned to communities with fewer than 100 other
members of our sample are grouped into a “residual” community (these individuals are likely to be
recent immigrants, who are members of communities where most members are outside the United
States). Overall, the 81 million users in our primary sample are assigned to 5,140 distinct communities
with an average size of 15,910 users. The average user in our sample has 53.4% of her friends within the
same community; at the 10th/50th/90th percentiles of our sample, these numers are 21%/54%/84%.

The first row of Figure A.5 compares the standard errors using this clustering approach to baseline
heteroskedasticity-robust standard errors for the estimates corresponding to column 4 (left panel) and
column 5 (right panel) of Table 2. We find that the community-clustered standard errors are very
similar in magnitude to the heteroskedasticity-robust standard errors, suggesting that, in our setting,
across-individual spillovers seem to not confound our inference, at least after conditioning on the large
set of controls and fixed effects. The other two rows compare standard errors clustered at the county
level (middle row) and individual level (bottom row) to heteroskedasticity-robust standard errors. As
before, these standard errors are at most 7.2% larger (and, in some cases, even marginally smaller) than
heteroskedasticity-robust standard errors.

Figure A.5: Comparison of Standard Errors
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Note: Figure compares standard errors using various clustering approaches to heteroskedasticity-robust standard errors for
the instrumental variables estimates corresponding to column 4 (left panel) and column 5 (right panel) of Table 2. The top
row uses standard errors clustered at the community level (see Appendix A.3 for discussion on our approach to detecting
communities), the middle row uses standard errors clustered at the county level, and the bottom row uses standard errors
clustered at the user level.
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A.4 Heterogeneity Models
In Section 3.2, we estimate heterogeneities in influence and susceptibility to influence across individ-
uals and relationships. In this appendix, we provide the regression specifications we use in these
analyses.

Heterogeneity by Relationship and Friend Characteristics. We first analyze heterogeneities in influ-
ence according to relationship characteristics and friend characteristics. In each regression, we consider
a mutually-exclusive and exhaustive group of characteristics G. For relationship characteristics, one
group of characteristics corresponds to strong and weak friendships, and another to geographically
proximate or non-proximate friends. For friend characteristics, one group of characteristics corre-
sponds to friend ages, with three conditions g ∈ G capturing friends aged 18–25, 26–40, and 40+. We
use these conditions to create new instruments and endogenous variables for each g ∈ G:

InstrumentLose,g
i,t = ∑j∈Fr(i) ProbBuyRandomPhoneLossj,t · 1(LostPhonej,t) · 1(Conditiong

j,t)

FriendsBuyPhoneg
i,(t,t+1) = ∑j∈Fr(i) 1(BuysPhone)j,(t,t+1) · 1(Conditiong

j,t)

We also create two new sets of controls. The first set counts the number of friends of user i who are
members of each group g, while the second controls for the average conditional probability among the
user’s friends in each group:

Friendsg
i,t = ∑j∈Fr(i) 1(Conditiong

j,t)

AllFriendsAvgProbBuyRPLg
i,t =

1
Friendsg

i,t
∑j∈Fr(i) ProbBuyRandomPhoneLossg

i,t · 1(Conditiong
j,t)

Using these new variables, we estimate one first stage per condition as well as a single second stage:

FriendsBuyPhoneg
i,(t−1,t) =∑g∈G δg InstrumentLose,g

i,t−1 + ∑g∈G ψgFriendsg
i,t−1+

∑g∈G θg AllFriendsAvgProbBuyRPLg
i,t−1 + ωXi,t + ei,t

1(BuysPhonei,t) =∑g∈G βg
̂FriendsBuyPhoneg

i,(t−1,t) + ∑g∈G ΨgFriendsg
i,t−1+

∑g∈G Θg AllFriendsAvgProbBuyRPLg
i,t−1 + γXi,t + εi,t

In each case, we include the same fixed effects and controls outlined in column 2 of Table 2.

Heterogeneity by User Characteristics. In Section 3.2, we also analyze how susceptibility to influ-
ence varies according to user characteristics. We employ a similar approach to that outlined above to
understand these heterogeneities:

InstrumentLose,g
i,t = 1(Conditiong

i,t) ·∑j∈Fr(i) ProbBuyRandomPhoneLossj,t · 1(LostPhonej,t)
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FriendsBuyPhoneg
i,(t,t+1) = 1(Conditiong

i,t) ·∑j∈Fr(i) 1(BuysPhone)j,(t,t+1)

Our regressions are similar to those outlined above, but when studying user characteristics, we do not
need to include separate controls indicating whether user i meets condition g, because each of these
conditions is already included as a fixed effect at a finer level of granularity. As before, we have one
first stage for each group g, as well as one second stage regression:

FriendsBuyPhoneg
i(,t−1,t) = ∑g∈G(δg InstrumentLose,g

i,t−1 ) + ωXi,t + ei,t

1(BuysPhonei,t) = ∑g∈G(βg ̂FriendsBuyPhone
g
i,(t−1,t)) + γXi,t + εi,t

In each case, we include the same fixed effects and controls outlined in column 2 of Table 2.

Heterogeneity by Pairwise Characteristics In Section 3.2, we also study variation in peer effects ac-
cording to user and friend characteristics simultaneously. We consider the same set G of characteristics
for both the users and friends. We construct new instruments and endogenous variables as follows:

InstrumentLose,g1,g2
i,t =1(Conditiong1

i,t+1)·

∑j∈Fr(i)[ProbBuyRandomPhoneLossj,t · 1(LostPhonej,t) · 1(Conditiong2
j,t)]

FriendsBuyPhoneg1,g2
i,(t,t+1) = 1(Conditiong1

i,t+1) ·∑j∈Fr(i)[1(BuysPhone)j,(t,t+1) · 1(Conditiong2
j,t)]

We use these variables to construct first stages that allow us to separately gauge the influence of friends
of each type on users of each type. The regressions for the first and second stages, respectively, are

FriendsBuyPhoneg1,g2
i,(t−1,t) =∑g1∈G ∑g2∈G(δg1,g2 InstrumentLose,g1,g2

i,t−1 ) + ∑g∈G ψgFriendsg
i,t−1+

∑g∈G θg AllFriendsAvgProbBuyRPLg
i,t−1 + ωXi,t + ei,t

1(BuysPhonei,t) =∑g2∈G ∑g1∈G(βg1,g2
̂FriendsBuyPhone

g1,g2

i,(t−1,t)) + ∑g∈G ΨgFriendsg
i,t−1+

∑g∈G Θg AllFriendsAvgProbBuyRPLg
i,t−1 + γXi,t + εi,t

In each case, we the same fixed effects and controls outlined in column 2 of Table 2. For each individual,
we additionally control for the number of friends in each group.
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A.5 Theoretical Model: Peer Effects, Demand Elasticities, and Prices
In this appendix, we describe a simple model of price setting under monopolistic competition that
allows us to illustrate an important channel through which peer effects in consumption can affect
demand elasticities and markups.6

A.5.1 Consumer Preferences

There are N consumers, and the consumption of each consumer is infinitesimally small relative to total
demand. An individual consumer i’s utility function is given by:

Ui =

(∫ n

0
Ri
(
Qj
)

qρi
ij dj
) 1

ρi
, (A.1)

where qij is individual i’s consumption of variety j, Qj = {q1j, q2j, ..., qNj} is a vector of quantities con-
sumed by all other individuals, and n is the mass of varieties available to consumers. The parameter
ρi is a measure of substitutability across product varieties, and is allowed to vary across individuals.

The function Ri(.) provides a reduced-form way of capturing the dependence of a consumer’s
consumption utility on the consumption of others through peer effects. Ri(.) can be individual-specific,
so that the quantity consumed by others enter differentially into different consumers’ utility; in other
words, different individuals are allowed to be differentially affected by the consumption of their peers.

One channel through which peers’ consumption can influence an individual’s own utility from a
particular good is a desire of people to consume similar types of products as others. This could come
about because of the proverbial “keeping up with the Joneses,” or because of network externalities that
make a particular good more useful if others are also using it (e.g., being on the iOS operating system
is more useful to me if my friends are also on iOS, since we can then communicate using Facetime). In
this case, the function R would be positive and increasing in q−ij, ensuring that individual i’s utility
for consuming a product is higher when the product is also widely consumed by others.

An alternative channel through which an individual’s own consumption of goods may be affected
by the consumption of others is through social learning. For instance, suppose that a product only
enters the consumer’s choice set if they learn about the existence of the item from friends that already
bought the item. In this case, we could specify R to reflect the probability that the individual learns
about the item from their friends, where R is an increasing function of the purchases made by friends.
At the extreme, if the individual has one friend and she only learns about the item if the friend pur-
chased the item, then R(q−i,j) = 1 when q−i,j > 0, and R(q−i,j) = 0 otherwise.

Parametric example. For the purposes of illustrating the implications of peer effects for consumption
and markups, consider the following parametric form:

Ri(Qj) =

(∫
F(i)

ψ f × q f jd f
)ηi

, (A.2)

6As discussed in the paper, it is possible that peer effects can also influence prices and markups through other channels. In
that case, the overall effect will depend on the relative strength of the forces discussed here, and any additional mechanisms.
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so that the utility for individual i is given by

Ui =

(∫ n

0
qρi

ij

(∫
F(i)

ψ f × q f jd f
)ηi

dj
) 1

ρi
, (A.3)

where F(i) denotes the set of peers that influence individuals i, and q f j denotes the quantity of variety
j consumed by individual i. The two scalar variables ηi and ψ f affect how sensitive individual i’s
consumption is to the consumption of her peers. ηi reflects how susceptible individual i is to the peer
effects exerted by others. When ηi = 0, then there are no peer effects from others and we have the
usual CES utility function. When ηi > 0, then an individual’s utility is dependent on the consumption
of their peers. The scalar ψ f reflects how influential individual f ’s consumption for the utility and
consumption of f ’s friends. Larger values for ψ f mean the consumption of individual f has a greater
impact on the utility of her friends.

Together, ηi and ψ f affect the overall magnitude of the peer effects in driving individual i’s con-
sumption. We can see this in the elasticity of expression A.2 with respect to quantity consumed by
friend f :

∂ ln Ri(Qj)

∂ ln q f j
= ηiψ̃ f , (A.4)

where
ψ̃ f j =

ψ f q f j∫
F(i) ψgqgjdg

. (A.5)

The higher the value of ηi and ψ f , the more sensitive is individual i’s consumption of variety j to
changes in peer f ’s consumption of variety j.

We next derive the analytical solutions for prices and markups using the parametric specifica-
tion in equation A.2. However, the implications for elasticities of consumption and markups hold for
various forms of Ri(Qj) that have the property where Ri(Qj) is weakly increasing in Qj.

A.5.2 Consumer Demand

Consumer i’s constrained maximization problem is given by

max
qij

Uρi
i − λi

(∫ n

0
pjqijdj− Ii

)
,

where λi is the multiplier on the budget constraint, and Ii denotes total income. From the consumer’s
maximization problem, the Frisch demand function is given by

qij =

 λi pj

ρi

(∫
F(i) ψ f × q f jd f

)ηiρi


1

ρi−1

. (A.6)
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The relative demand for varieties j and k is given by

qij

qik
=

 pj

pk

(∫
F(i) ψ f × q f kd f

)ηiρi(∫
F(i) ψ f × q f jd f

)ηiρi


1

ρi−1

. (A.7)

Let σi ≡ 1
1−ρi

, which is the elasticity of substitution when ηi = 0. Hence,

qij = qik

(
pj

pk

)−σi
(∫

F(i) ψ f × q f kd f∫
F(i) ψ f × q f jd f

)ηi(1−σi)

. (A.8)

Multiplying both sides by pj and integrating with respect to all varieties yields

∫ n

0
pjqijdj =

∫ n

0
qik p1−σi

j pσi
k

(∫
F(i) ψ f × q f kd f∫
F(i) ψ f × q f jd f

)ηi(1−σi)

dj.

The left-hand side is total expenditure, which we assume equals total income Ii. Hence, we can write
the individual consumer’s demand for variety k as

qik =
p−σi

k

(∫
F(i) ψ f × q f kd f

)ηi(σi−1)

∫ n
0 p1−σi

j

(∫
F(i) ψ f × q f jd f

)ηi(σi−1)
dj

Ii. (A.9)

Elasticity of Consumer Demand

The individual consumer’s demand for variety k (and the individual’s price elasticity of demand)
now depends on the consumption of others. From equation A.8, we can compute the elasticity of an
individual consumer i’s demand for variety k relative to the demand of others (e.g., friend f ). This is
given by

∂ ln qik

∂ ln q f k
= (σi − 1)(1− sik)ηiψ̃ f k (A.10)

where qik is the quantity consumed by individual i, qik is the quantity consumed by individual f ,
Qj = {q1j, q2j, ..., qNj} is a vector of quantities consumed across individuals, and sik is the expenditure
share of variety k for consumer i.

As discussed above, the scalar ηi reflects the susceptibility of individual i to peer effects, and ψ̃ f j

is the influence of friend f defined in equation A.5. The larger is ηi, the more sensitive is the individ-
ual’s demand for variety j to the consumption of others; similarly, increases in consumption by more
influential friends (high-ψ̃ f j friends) have a larger effect on own demand for variety j. When ηi = 0,
the individual’s demand does not depend on consumption of others.
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Price elasticity of demand

The price elasticity of consumer i’s demand for variety k is given by:7

−∂ ln qik

∂ ln pk
= σi + (σi − 1)ηi

∫
F(i)

ψ̃ f k ×
−∂ ln q f k

∂ ln pk
d f . (A.11)

Equation A.11 highlights that, for the standard case with σ > 1, peer effects lead individuals to have
larger price elasticities than in the benchmark model (which only includes the first term). In addition,
the equation shows that individuals can have different price elasticities of demand for at least three
reasons.

1. They may have different elasticities of substitution between varieties, i.e. heterogeneity in σi.
The larger σi, the more responsive is consumer i’s demand to price changes. This effect, which
corresponds to the first term in equation A.11, exists even in the absence of peer effects.

2. Individuals can have different price elasticities because their utility is differently affected by the
consumption of others. In other words, individuals may be differentially susceptible to peer
effects, generating heterogeneity in ηi. The larger is ηi, the more price elastic is the demand of
individual i, all else equal, because the increase in consumption of their peers in response to a
given price drop has a larger effect on their own utility (and thus demand).

3. Individuals may also have heterogeneous price elasticities of demand because their set of friends
is different in terms of both their influence and their price elasticities. Specifically, peer effects
can lead to higher price elasticity of demand when (i) a person’s friends are more influential (the
first term within the integral, ψ̃ f k), and (ii) for a given ψ̃ f k, the consumption of peers is more price

sensitive (the second term within the integral, −∂ ln q f k
∂ ln pk

). Putting the two forces together, we can
see that there is a larger price elasticity of demand when each of these two terms is higher, as
well as when there is a higher covariance between the peer influence of a friend and the price
sensitivity of the friend. Our empirical micro estimates are informative about the magnitudes of
the covariance between the peer influence of a friend and the price elasticity of that friend.

A.5.3 Firm’s problem and Price Setting

Production of a good involves a fixed cost F in addition to a constant marginal cost c, so the average
cost is decreasing in quantity. To keep things simple, there are no economies of scope to producing
multiple varieties. Therefore, there is a continuum of firms, where each firm produces one variety and
there is one firm per variety. A firm that produces variety k has profits

πk = pkxk − cxk − F,

7This derivation is based on the assumption that there is a continuum of firms and varieties produced, and the function

R is bounded. Therefore,
∂
∫ n

0 p1−σi
j Ri(Qj)

(σi−1)dj
∂pk

≈ 0.
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where xk denotes the quantity of variety k produced. The firm sets prices pk to maximize profits.
Solving the firm’s problem yields:

pk = c +
−xk

∂xk/∂pk
. (A.12)

In equilibrium, the free entry condition implies zero profits. Hence, xk = F/(pk− c). The market clear-
ing condition is given by xk =

∫
i qikdi, where qik is the quantity of variety k consumed by individual i.

From the market clearing condition, we can derive the following partial derivative expression:

−∂xk

∂pk

1
xk

=
∫

i

−∂qik

∂pk
di× 1∫

f q f kd f
=

1
pk

∫
i

−∂ ln qik

∂ ln pk
wikdi, (A.13)

where wik =
qik∫

f q f kd f , and the price elasticity of demand ∂ ln qik
∂ ln pk

was previously derived in equation A.10.

Equation A.13 can be interpreted as the weighted-average aggregate price elasticity of demand,
where the individual price elasticities of demand are weighted by their quantity of consumption rela-
tive to total aggregate consumption. Substituting A.13 into the firm’s first-order conditions gives the
following markup expression:

pk

c
=

1
1− θk

, (A.14)

where

1/θk ≡
∫

i

(
σi + (σi − 1)ηi

∫
F(i)

ψ̃ f k ×
−∂ ln q f k

∂ ln pk
d f
)

wikdi (A.15)

Notice that when there are no consumption peer effects, i.e. ηi = 0, then the markup equals σk
σk−1 , where

σk ≡
∫

i σiwikdi. This corresponds to the markup expression in the usual monopolistic competition
Dixit-Stiglitz model, allowing for heterogeneity in σ across individuals.

In the presence of consumption peer effects, where ηi > 0, markups are strictly less than σk
σk−1 .

Peer effects are stronger (and markups are smaller) when individuals’ utilities of a variety is more
sensitive to the consumption of others (large ηi). Markups are also smaller when price changes lead to
larger changes in the amount of peer influence exerted, either because each friend is more influential,
or because each friend is more price sensitive (and therefore more likely to buy and exert influence),
or because the most price sensitive friends are the most influential ones. Equation A.15 also highlights
another covariance that determines the overall influence of peer effects on markups: the correlation
between an individuals’ own susceptibility to peer influence (ηi) and the overall peer effect exerted
on this individual, which depends on which people are friends with that individual (Fi): markups are
particularly low if the most susceptible individuals are friends with the most influential individuals.8

Equation A.14 has also has implications for the dispersion of markups across firms and over time.
In particular, it shows that markups can vary across firms because of differences in the strength of peer
effects for different products produced by firms. Indeed, our estimates imply that the strength of peer
effects do vary significantly across different mobile phone brands, and there are likely even stronger
heterogeneities across different product categories that could contribute to markup dispersion. In
related work, we explore this further (see Kuchler, Stroebel, and Wong, 2021)

8In our setting, we did not find a large amount of heterogeneity in susceptibility to peer influence across demographic
groups, but these parameters will differ in other settings.
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A.6 Phone Model-Level Analysis
In this appendix, we explore peer effects at the model level. Specifically, we analyze whether having a
friend buy an iPhone 6s primarily increases a person’s own probability of also purchasing an iPhone
6s, or whether it increases the individual’s probability of purchasing an iPhone in general. To do so,
we explore purchases of each of the 20 most common models that individuals switch to in our sample,
in addition to three residual categories. The full set of phones P that we study includes iPhone 6s,
iPhone 6s Plus, iPhone SE, iPhone 6, iPhone 5s, iPhone 6 Plus, Other iPhone, Galaxy S7, Galaxy S7
Edge, Galaxy Core Prime, Galaxy Note 5, Galaxy J7, Galaxy Grand Prime, Galaxy S5, Galaxy S6, Other
Galaxy, LG Tribute 5, LG K10, LG G5, LG G Stylo, HTC Desire 626s, Alcatel One Touch, and Other.

For this analysis, we cannot use an instrumental variables research design, as we do in the main
body of the paper. In particular, while observable characteristics allow us to predict relatively well
whether a given individual would purchase an iPhone or a Galaxy, it is much harder to predict whether
an individual would buy an iPhone 6 or an iPhone 6s, and the resulting estimated probabilities are
highly collinear.9 Instead of an instrumental variables specification, we therefore run the following
OLS regressions for each model p′ ∈ P:

1(BuysPhone)p′

i,t =∑p∈P β
p′
p FriendsBuyPhonep

i,t−1+ (A.16)

∑p∈P π
p′
p ProbBuyUncondp

i,t+

∑p∈P ξ
p′
p AllFriendsAvgProbBuyUncondp

i,t + γXi,t + εi,t

The central controls in these specifications are the unconditional probabilities of purchasing each
phone p ∈ P of person i, as well as the averages of these probabilities across all of person i’s friends.
The vector Xi,t includes additional controls analogous to those in Equation 11. The coefficients of inter-
est are the parameters β

p′
p , of which there are at total of |P| × |P| = 529. The similarity of the OLS and IV

estimates in Section 3 suggests that biased coefficients due to correlated shocks may not be a first-order
concern for the analysis, especially after conditioning on time fixed effects interacted with our large set
of control variables. In addition, even if these OLS estimates were biased on average, patterns across
these coefficients can still be informative about the nature of the underlying peer effects—especially
since many common shocks should affect these estimates in similar ways.

The left panel of Figure A.6 shows a histogram of the estimated β
p′
p coefficients. About 64% of the

estimated coefficients are positive. The right panel shows the distributions of β
p′
p coefficients for three

groups. The first group includes the 20 same-model coefficients that capture the effects of an individual
buying a specific model on the probability of her friends buying the same model. The second group
corresponds to same-brand, different-model peer effects. They capture, for example, the effect of an
individual buying a Galaxy S7 on his friends’ probability of purchasing a different Galaxy model, such
as a Galaxy Note 5. The final group includes all peer effects to models from a different brand.

9In Appendix A.2, we describe how we estimate the unconditional probabilities that individuals purchase a phone of
each type p in a given week, ProbBuyUncondp

i,t. Many of these probabilities are highly correlated within individuals. For
example, the predicted propensities to purchase an iPhone 6s and an iPhone 6 have a correlation of 0.89, and the predicted
propensities to purchase a Galaxy J7 and a Galaxy S5 have a correlation of 0.90.
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Figure A.6: Specific Model Peer Effects (OLS)
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Note: Figure shows the distributions of β
p′
p coefficients from regression A.16. The left panel shows a histogram of the 529

coefficients. The right panel splits these up into three groups. The top bar shows the coefficients when p and p′ correspond
to the same model; the middle bar corresponds to the coefficients when p and p′ correspond to different models of the same
brand, and the bottom bar corresponds to the coefficients when p and p′ correspond to different brands. We include the
coefficients for “Other iPhone” to “Other iPhone” and “Other Galaxy” to “Other Galaxy” in the “Same Brand” category. We
include the “Other” to “Other” coefficient in the “Other Brand” category, even though some of these peer effects could still
correspond to “Same Model” or “Same Brand” purchases for phones that were so uncommon that they were not split out
independently. Among the 20 precise models we split out, there are 3 unique brands with more than one model: iPhone,
Galaxy, and LG. The box plots show the 5th, 25th, 50th, 75th and 95th percentiles of the distribution.

By far the largest peer effects are concentrated within the same model. Indeed, the smallest same-
model peer effect we estimate is larger than the largest different-model peer effect. There is also
substantial heterogeneity across the estimated same-model peer effects. In Figure A.7, we plot the
20 same-model β

p′
p coefficients against the market price of the model during our sample period (left

panel), and against the time since the market introduction (right panel). There is no correlation be-
tween model price and the estimated same-model peer effect. In other words, low-end models such
as the LG Tribute 5 have similarly sized same-model peer effects as more upscale models such as the
iPhone 6s Plus. On the other hand, we find that same-model peer effects are substantially larger for
more recent models, regardless of the price of these models. As before, these patterns point towards
social learning as an important driver for the estimated peer effects (the importance of which should
decline as the model becomes more well-known over time). The evidence for a “keeping up” effect,
which would likely be more important for more expensive phones, is more limited, though, as we have
discussed, we cannot rule out that it also contributes to the overall peer effects.

Figure A.6 also shows that same-brand, different-model peer effects are almost three times as large
as different-brand peer effects, with an average β

p′
p coefficient of 0.0036 vs. 0.0013. To further explore

the same-brand, different-model peer effects, we split them up according to the three major brands in
our data. The left panel of Figure A.8 shows that these same-brand, different-model peer effects are
largest among the iPhones in our sample and smallest among the LG phones. This finding is consistent
with the relatively independent conduct of the marketing campaigns for the LG models (and the model
names not indicating any relationship between phones), while both Apple and Samsung tended to
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Figure A.7: Same-Model Peer Effects
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Note: Figure shows scatterplots of the 20 same-model β
p′
p coefficients from regression A.16 against the price of the model

(left panel) and the time since the model’s release (right panel).

jointly market their entire range of phones under a common brand identity. These results suggest that
umbrella branding campaigns of different phone models can generate valuable same-brand spillovers
through peer effects (see Erdem, 1998, for academic analyses of the spillovers of marketing activities
due to umbrella branding). The results also highlight additional benefits resulting from line extension
strategies beyond the direct effects of advertising spillovers documented by Balachander and Ghose
(2003).

Figure A.8: Same-Brand, Different-Model Peer Effects
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Note: Figure shows the same-brand, different-model β
p′
p coefficients from regression A.16. The left panel shows the distri-

bution of the effects separately by the three main brands in our sample. The box plots show the 5th, 25th, 50th, 75th, and 95th

percentiles of the distribution. In the right panel, we form groups on the basis of the price difference between the models (i.e.,
Price(p′)− Price(p)), and plot the average OLS coefficient on the basis of that price difference. Positive numbers capture the
peer effects of a friend buying a cheaper model on a person’s probability of buying a more expensive model.

The right panel of Figure A.8 shows the same-brand, different-model peer effects split out by the price
difference between the two models. Positive numbers on the horizontal axis capture the peer effects
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Figure A.9: Different-Brand Peer Effects
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Note: Figure shows the different-brand β
p′
p coefficients from regression A.16. The left panel shows the distribution of the

effects separately by the price of the peer model including a quadratic fit line. In the right panel, we form groups on the basis
of the price difference between the models, Price(p′)− Price(p), and plot the average OLS coefficient on the basis of their
price difference. Positive numbers capture the peer effects of a friend buying a cheaper model on a person’s probability of
buying a more expensive model.

of a friend buying a cheaper model on a person’s probability of buying a more expensive model. We
find that peer effects are larger for similarly-priced models than they are for models that are either
substantially more expensive or substantially cheaper. Importantly, this finding is not just the result of
an individual and her friends having similar incomes or being similarly old. Indeed, in all regressions,
we directly control for individuals’ estimated unconditional probability of purchasing a certain phone
model, in addition to the average of these probabilities across their friends. These findings are consis-
tent with evidence from the marketing literature that across-product spillovers decrease in magnitude
as products become more dissimilar (e.g., Janakiraman, Sismeiro, and Dutta, 2009).

In the last part of the analysis, we split out different-brand peer effects. The left panel of Figure
A.9 shows that these peer effects do not vary, on average, with the price of the models. The right
panel shows that most of these different-brand peer effects are concentrated on different brand models
in a similar price range as the phone purchased by the peer. This is consistent with the patterns and
associated interpretations for same-brand peer effects documented above.

Summary of Model-Level Findings. A number of take-aways result from our model-level analysis.
First, same-model peer effects are more than an order of magnitude larger than different-model peer
effects. Second, these same-model peer effects do not vary with the cost of the model, but rather they
are decreasing in the time since the model release, providing additional evidence for an important
social learning channel behind the peer effects. Third, same-brand, different-model peer effects are
more than twice as large as different-brand peer effects. These effects are largest for brands that co-
brand their devices and are also largest within each brand for models of similar value. Finally, across-
brand peer effects do not vary with model value, and are largest for models of similar value.
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A.7 Robustness Checks – Specifications
In our baseline regressions, we include a number of controls and fixed effects, which we describe in
detail in Section 2.3. In this appendix, we show that our results are robust to changes in the set of
controls and fixed effects we incorporate. In Figure A.10, we present the estimated β-coefficients for
64 different variants of our baseline regression 6. Each variant is depicted as a dot, with the 95%
confidence intervals shaded in gray. The red diamond corresponds to our baseline specification. In the
panel below the graph, we indicate which fixed effects and controls are included in each regression.
We consider three modifications to the set of fixed effects. In the regressions marked No_Week, we
omit the week interaction term from each of the three sets of fixed effects. Correspondingly, in the
regressions marked No_Edu, we remove the education fixed effect, while in the regressions marked
No_Age, the age fixed effect is omitted. For each of the four variants of fixed effects (our baseline plus
three adjustments), we run a number of permutations, excluding some of our baseline set of controls.
In the regressions marked User_ML, we control for if a user posts about breaking their own phone.
In the regressions marked Friend_Privacy, we control for the number of a user’s friends whose posts
are public by default. In the regressions marked Other_Posts, we control for the number of a user’s
friends who post about anything other than a broken phone. In the regressions marked Historic_Prob,
we control for the number of a user’s friends who broke their phone in the 12 months prior to our
sample, or for the conditional probability of buying a new phone among these users. In our baseline
specification, we control for all of these variables, but our results are largely similar if we only control
for a subset of them or if we adjust the fixed effects.

Figure A.10: Robustness of Alternative Specifications of Controls and Fixed Effects
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